
UX Q&A
Data Serialization and Binary RPC 
February 2nd 2021
Suresh Marru & Marlon Pierce



Project 1 anti-patterns
• “If it did not happen on your GitHub repo it did not happen”.
• You will need to iteratively improve any aspect of the course

• Waiting for Saturday to work on the Sunday deadline is your best way 
to fail this course. 

• Software engineering project vs Architectural thinking.
• The goal is to understand the project well and solicit feedback.
• We will only react to what you submit, so this is your chance to

run it by us to make sure you understood what is expected from 
you remainder of the semester. 





Project 2 Requirements
• Each of the components in the previous diagram is a microservice. 

• Each must run as a separate process.
• You must use at least 3 different programming languages 

• For example, one service in Python, one in Go, one in Java, ...
• You must use at least one DB technology

• Only one microservice can connect to each DB
• You must choose and implement an internal communication strategy for 

your microservices
• You must define your API based on this lecture and other discussions
• Your entire system must be easily deployable by your peers, 

graders, and instructors 



Reference Papers
• Verma, Abhishek, Luis Pedrosa, Madhukar Korupolu, David 

Oppenheimer, Eric Tune, and John Wilkes. "Large-scale cluster 
management at Google with Borg." In Proceedings of the Tenth 
European Conference on Computer Systems, pp. 1-17. 2015.

• https://dl.acm.org/doi/pdf/10.1145/2741948.2741964
• Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer, 

and John Wilkes. "Borg, omega, and kubernetes." Queue 14, 
no. 1 (2016): 70-93.

• https://dl.acm.org/doi/pdf/10.1145/2898442.2898444

https://dl.acm.org/doi/pdf/10.1145/2741948.2741964






Programming Language “polyglotism”
• Modern distributed applications are rarely composed of 

modules written in a single language.
• Weaving together innovations made in a range of languages is 

a core competency of successful enterprises.
• Cross language communications are a necessity, not a luxury.
• In your projects you need to demonstrate this by using three or 

more languages. 



Thrift, ProtoBuff and gRPC



Cross-Language Communications 

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



Other Motivations
• Large-scale distributed systems actually composed of microservices

• Allows loosely-coupled and even multilingual development
• Scalability: things, cores, devices, nodes, clusters, and data centers (DCs)

• Communication predominantly structured as RPCs
• Many models of RPC communication
• Terminology: Client uses a stub to call a method running on a 

service/server
• Easiest interfaces (synchronous, unary) resemble local procedure calls

• Translated to network activity by code generator and RPC library
• High-performance interfaces (async, streaming) look like Active Messaging

• Long way from textbook description of RPCs!



� #JUSFLR

([DPSOH�J53&�FOLHQW�VHUYHU�DUFKLWHFWXUH



Protocol Buffers
• “a language-neutral, platform-neutral, extensible way of 

serializing structured data for use in communications protocols, 
data storage, and more.”

• “Protocol buffers are a flexible, efficient, automated mechanism 
for serializing structured data – think XML, but smaller, faster, 
and simpler. ”

• https://developers.google.com/protocol-buffers/docs/overview
• Started internally within Google in 2001 and Opened in 2008.

https://developers.google.com/protocol-buffers/docs/overview


Protocol Buffers Contd. 
• IDL (Interface definition language) 

• Describe once and generate interfaces for any language. 
• Data Model 

• Structure of the request and response. 
• Wire Format 

• Binary format for network transmission. 



Apache Thrift
• Thrift is Facebook’s implementation of Proto Buff open sourced 

under Apache.
• A high performance, scalable cross language serialization and 

RPC framework.
• Provides a full RPC Implementation with generated clients, 

servers, everything but the business logic.
• Thrift is is fast and efficient, solutions for minimal parsing 

overhead and minimal size. 



Thrift for RPC Services
• User Code

• client code calls RPC methods and/or [de]serializes 
objects

• service handlers implement RPC service behavior
• Generated Code

• RPC stubs supply client side proxies and server side
processors

• type serialization code provides serialization for IDL 
defined types

• Library Code
• servers host user defined services, managing 

connections and concurrency
• protocols perform serialization
• transports move bytes from here to there

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



4 Simple Steps to Create a RPC 
microservice

1. Define the service in a language neutral 
“Interface Description Language”.

2. Compile the IDL to generate Server and 
Client “stubs” in desired programming 
languages.

3. Plug the server implementation in the pre-
generated server stub.

4. Call the remote services as if they are 
making local method calls.

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



Thrift: Multiple Communication Schemes
• Streaming – Communications characterized by an ongoing flow of 

bytes from a server to one or more clients.
• Example: An internet radio broadcast where the client 

receives bytes over time transmitted by the server in an 
ongoing sequence of small packets. 

• Messaging – Message passing involves one way asynchronous, 
often queued, communications, producing loosely coupled 
systems.

• Example: Sending an email message where you may get a 
response or you may not, and if you do get a response you 
don’t know exactly when you will get it.

• RPC – Remote Procedure Call systems allow function calls to be 
made between processes on different computers.

• Example: An iPhone app calling a service on the Internet 
which returns the weather forecast.

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.

Apache Thrift is an efficient cross platform 
serialization solution for streaming interfaces

Apache Thrift provides a complete RPC framework



Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



— Google open sourced in Feb 2015

— Transport: HTTP/2

— Wire format: Protocol Buffers v3 (Binary)

— Service definition: Protocol Buffers IDL

— Libraries in ~10 languages (native C, Go, Java)

— Microservices framework



What is gRPC for? (from official FAQ)

— Low latency, highly scalable, distributed systems

— Developing mobile clients which are communicating 
to a cloud server

— Designing a new protocol that needs to be accurate, 
efficient and language independent

— Layered design to enable extension e.g. 
authentication, load balancing, logging and 
monitoring etc




