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Container recap

 “Containers encapsulate the application environment,
abstracting away many details of machines and operating

systems from the application developer and the deployment
infrastructure.”

» “Because well-designed containers and container images are
scoped to a single application, managing containers means
managing applications rather than machines. This shift of
management APIs from machine-oriented to application
oriented dramatically improves application deployment and
introspection.”



The Challenge
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The Matrix From Hell
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Do | worry about how Can | transport quickly
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A matrix from hell
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Multiplicity of Goods

Solution: Intermodal Shipping Container

A standard container that is
loaded with virtually any
goods, and stays sealed
until it reaches final delivery.
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...in between, can be loaded and
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Multiplicity of Stacks

Multiplicity of hardware

Docker is a shipping container system for
code
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Docker: Infrastructure as Code

* In short, Docker lets you define in script files everything about each of
your microservices.

» Combine this with CI/CD systems to deploy EACH microservice.

* Your development to test to production environments should be identical
and reproducible.

 Testing and production deployments for each service should be infinitely
clone-able.

 This is not elasticity, but it is a prerequisite.
* Docker and other containers have much less overhead
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Cloud Federation
Docker Swarm (Cluster Federation)

Compose .yml Description

Swarm

Cluster
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Cloud Federation
Ubernetes (Google)
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Google Borg

» Borg: An OS of Cluster (Datacenter)

* Motivation
 Hide the details (programmer focus on App)
* Provide resource sharing
 Provide high reliability and availability for Cluster



The User Perspective

job hello_world = {

runtime = { cell = 'ic' } // What cluster should we run in?
binary = '.../hello_world_webserver' // What program are we to run?
args = { port = 'Z%portk' } // Command line parameters
requirements = { // Resource requirements

ram = 100M

disk = 10eM

cpu = 0.1
}

replicas = 10000 // Number of tasks

} > borgcfg .../hello_world_webserver.borg up



The User Perspective

* Allocs
» Reserved set of resources

* Priority, Quota, and Admission Control
 Job has a priority (preempting)
* Quota is used to decide which jobs to admit for scheduling

« Naming and Monitoring

 50.jfoo.ubar.cc.borg.google.com
» Monitoring health of the task and thousands of performance metrics



Borg Architecture
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Borg Architecture

« Scheduling
» feasibility checking: find machines
« Scoring: pick one machines
» User preferences & build-in criteria
« E-PVM VS best-fit
 Tradeoff
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Utilization

* Cell Sharing

« Segregating prod and non-prod work into different cells would need
more machines
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(a) The left column for each cell shows the original size and the (b) CDF of additional machines that would be needed if we

combined workload; the right one shows the segregated case. segregated the workload of 15 representative cells.



Utilization

* Cell Size

« Subdividing cells into smaller ones would require more machines
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Utilization

» Fine-grained resource requests

No bucket sizes fit most of the tasks weBucketing resource would need more mack
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Utilization
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Utilization

 Resource reclamation
 Choose medium

CPU [%]

capacity limit reservation usage s

. 1,1 \’ \JM’I'W“, W 4 M"’"U"I‘“W w.mgwﬁwnw? X

OOMs Mem [%]

Week 1 (baseline) Week 2 (aggressive)

Week 3 (medium) Week 4 (baseline)



Isolation

 Security isolation
» chroot jail as the primary security isolation mechanism

« Performance isolation
 High-priority LV task(prod) get best treatment
« compressible resources: reclaimed
* non-compressible resources: kill or remove task



Kubernetes

 Evolved from Borg

« An open-source system for automating deployment, operations,
and scaling of containerized applications

* Pods: groups of containers
* Labels

* Replica controller
 Services

kubernetes



