CYBERINFRASTRUCTURE
INTEGRATION RESEARCH CENTER

PERVASIVE TECHNOLOGY INSTITUTE

Cluster Frameworks and Kubernetes
March 11th 2021
Suresh Marru & Marlon Pierce

Reference Papers

* Verma, Abhishek, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. "Large-scale cluster
management at Google with Borg." In Proceedings of the Tenth
European Conference on Computer Systems, pp. 1-17. 2015.

* https://dl.acm.org/doi/pdf/10.1145/2741948.2741964

* Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer,
and John Wilkes. "Borg, omega, and kubernetes." Queue 14,
no. 1 (2016): 70-93.

* https://dl.acm.org/doi/pdf/10.1145/2898442.2898444
* The lecture borrows concepts and content from this paper.

https://dl.acm.org/doi/pdf/10.1145/2741948.2741964
https://dl.acm.org/doi/pdf/10.1145/2898442.2898444

Cluster Computing
Frameworks

S distributed stream
computing platform

Vertices

Output files M‘ O/M e GO Ogle maml i
Dryad Percolator “g 9!£

Container recap

 “Containers encapsulate the application environment,
abstracting away many details of machines and operating

systems from the application developer and the deployment
infrastructure.”

» “Because well-designed containers and container images are
scoped to a single application, managing containers means
managing applications rather than machines. This shift of
management APIs from machine-oriented to application
oriented dramatically improves application deployment and
introspection.”

The Challenge

L L
User DB ® S5 o
(=g
2 Static website postgresql + pgy8 + v8 g °e i 3 o
o (] & Queue Analytics DB g8
)
% nginx |.5 + modsecurity + openssl| + bootstrap 2 Redis + redis-sentinel hadoop + hive + thrift + Open|DK § g
(7]
5 g ® Web frontend €3
S eb fronten =2
= o Background workers oe g
= Ruby + Rails + sass + Unicorn 2 g
S Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv + nodejs + L]) . ‘<° »
= phantomjs “‘ API endPO|nt

Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-client

- Devel VM Production Cluster
- evelopment Public Cloud

QA server

[-
OBE
= c
2T o
s @ .=
S5 < 2
= o

Disaster recovery

ApdInb pue

Customer Data Center

. , 1
Contributor’s laptop

o
)
S
3,
=
o
(=3
®
o
3
<]
<]
-
=
<

Production Servers

The Matrix From Hell

Static website

Web frontend

Background workers

Analytics DB

Developme
nt VM

Single Prod Public Contributo Customer

QA Server o er Cloud r’s laptop Servers

Do | worry about how Can | transport quickly
goods interact (e.g. and smoothly

coffee beans next to (e.g. from boat to train to
spices) truck)

1960

Cargo Transport Pre

Buuioys/buipodsue.y 1oy

sPoo9 jo Ayudnini spoyew yo Aonidnin

A matrix from hell

wg| |

J0;
I
3

Multiplicity of Goods

Solution: Intermodal Shipping Container

A standard container that is
loaded with virtually any
goods, and stays sealed
until it reaches final delivery.

(se01ds 0] 1xaU sueaq
99409 "6°9) JoeIBIUI SPOOH
Moy jnoge Aliom | og

Multiplicity of methods for

transporting/storing

...in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another

(>ona
0] ureJ} 0} 1eoq wouj ‘69)

Alyjoows pue
Apfoinb podsuely | uen

Multiplicity of Stacks

Multiplicity of hardware

Docker is a shipping container system for
code

oo Static website “" User DB g Web frontend :: Queue o5 Analytics DB

An engine that enables any

payload to be encapsulated

as a lightweight, portable,

self-sufficient container...
EEEEEEEEEEEEEEEEEEENETSR EEEEEEEEEEEEEEEEEEEEESR

...that can be manipulated using
” standard operations and run
= consistently on virtually any
£ hardware platform
o
s
G _
.

Development QA server Customer Data Public Cloud Production Contributor’s
VM Center Cluster laptop

¢ Ae1endoidde 1oelsyul
sdde pue sadiAlas 0Qg

Apfoinb pue
Alyioows ayeiBbiw | uen

Docker: Infrastructure as Code

* In short, Docker lets you define in script files everything about each of
your microservices.

» Combine this with CI/CD systems to deploy EACH microservice.

* Your development to test to production environments should be identical
and reproducible.

 Testing and production deployments for each service should be infinitely
clone-able.

 This is not elasticity, but it is a prerequisite.
* Docker and other containers have much less overhead

C h a n g es a n d U p d ate https://docs.docker.com/storage/storagedriver/

1 1
> ' ! Push
% 1 |—
1
> i : Docker
' Container

Registry

1
ﬁ Image
! |
! 1

Base Container Container
Container Mod A’ Mod A”
Image

Docker Engine

Docker Engine

Host running A wants to upgrade to A”. Requests

Host is now running A”
9 update. Gets only diffs

Cloud Federation
Docker Swarm (Cluster Federation)

Compose .yml Description

Swarm

Cluster

.. CcMm1
Managers

Cloud Federation
Ubernetes (Google)

-
-
-
-
-
-

kubernetes

Ubernetes

ku bernetes ku bernetes ku bernetes

\
/

~
~
-~
S
~
-~

kubernetes

Google Borg

» Borg: An OS of Cluster (Datacenter)

* Motivation
 Hide the details (programmer focus on App)
* Provide resource sharing
 Provide high reliability and availability for Cluster

The User Perspective

job hello_world = {

runtime = { cell = 'ic' } // What cluster should we run in?
binary = '.../hello_world_webserver' // What program are we to run?
args = { port = 'Z%portk' } // Command line parameters
requirements = { // Resource requirements

ram = 100M

disk = 10eM

cpu = 0.1
}

replicas = 10000 // Number of tasks

} > borgcfg .../hello_world_webserver.borg up

The User Perspective

* Allocs
» Reserved set of resources

* Priority, Quota, and Admission Control
 Job has a priority (preempting)
* Quota is used to decide which jobs to admit for scheduling

« Naming and Monitoring

 50.jfoo.ubar.cc.borg.google.com
» Monitoring health of the task and thousands of performance metrics

Borg Architecture

config
file
borgcfg] [;:;)J\Smand Ime]] web browsers

« Borgmaster S~ [/
« Main Borgmaster process & Scheduler Cell e
» Five replicas e '2?313'
scheduler n persistent store
* Borglet e S
« Manage and monitor tasks and /\
resource) —— 4
- Borgmaster polls Borglet every few (Borgiet 1| |{Bomiet 11| Eorgiet 1[| [(Eorget 1
I —
seconds CJD D D - H -
cC/Y C_))

The high-level architecture of Borg(A Cell)

Borg Architecture

« Scheduling
» feasibility checking: find machines
« Scoring: pick one machines
» User preferences & build-in criteria
« E-PVM VS best-fit
 Tradeoff

config
file
borgcfg

command line
web browsers

tools

Cell . —— ‘f
BorgMaster | read/Ul
shard
o persistent store
scheduler > (Paxos)
link shard
y / \ y
£ | | £—Z £ \. v
-~ L] “ag
| orglet | |Borg|et | |B orglet | |Borg|et |
=0 Bl = }
V= U /))

The high-level architecture of Borg(A Cell)

Scalability ;
file S][’

command-line
web browsers

tools
* Separate scheduler > \\J ﬁ/
» Separate threads to poll the BorgMaster | S8/ |
Borglets scheduler 1 > ?F?;iiggm store
» Partition functions across the five link shard | ||1¥
replicas) _— \\ .
. y |/ /' .
° Score CaChlng IBorgIet | IBorgIet | IBorgIet | Borglet
. —
« Equivalence classes CJD) D 2 H -

* Relaxed randomization

The high-level architecture of Borg(A Cell)

u u I“ -
Aval Ia bl I I '] ‘ preerﬁption ' ' other mmmss ' machine failure

prod machine shutdown out of resources

non-prod
« System x ' l ' ' ' l
0 1 2 3 4 5 6 7
° Borgmaster: Evictions per task-week
» Borglet: Borgmaster
. R ing tasks
« Take checkpoint P

° JOb 7500

* Reschedules evicted tasks .
» Spreading tasks across failure domia

Tasks?

d w pending a setup” run
(1) (5) { (9993)

2500

0
0:00:30 0:01:00 0:01:30 0:02:00 0:02:30 0:03:00

Elapsed time

Utilization

* Cell Sharing

« Segregating prod and non-prod work into different cells would need
more machines

100
200 -brod Dnon-prod ‘Wlbascline unused 80F
2
= 8
8150 5 60}
S (0]
2 %
g € a0l
100 8 40
8 §
] o
* 50 20
0 0 , '
A B c D E -10 0 10 20 30 40 50 60
Cell Overhead from segregation [%)]
(a) The left column for each cell shows the original size and the (b) CDF of additional machines that would be needed if we

combined workload; the right one shows the segregated case. segregated the workload of 15 representative cells.

Utilization

* Cell Size

« Subdividing cells into smaller ones would require more machines

100 T J= I
® 80
9 8
g S 60
'
20f 2 subcells -
5 subcells
0 ‘ . 10 subcells
-50 0 50 100 150 200 250
Sub-cells Overhead from partitioning [%]
(a) Additional machines that would be needed as a function of (b) A CDF of additional machines that would be needed to

the number of smaller cells for five different original cells. divide each of 15 different cells into 2, 5 or 10 cells.

Utilization

» Fine-grained resource requests

No bucket sizes fit most of the tasks weBucketing resource would need more mack

&) 80 - ﬂ 80 - “
: 8
B 60 I “6 60 L
= & 1= L
S /3 prod CPU —— g 4o ~]
S ¥ non-prod CPU &
20 prod memory =ssssssss 20
¥ non-prod memory
2o memory-to-CPU-ratio »mwimin — upper bound
o™ e L 1 ‘ = ‘ ‘ ‘ — Jower bound
0.01 0.1 1 10 100 1000 .20 0 20 40 60 80 100 120

Requested limit [cores, GiB, GiB/core] Overhead [%]

Utilization

allocated

] used
 Resource reclamation — 1

2 RN R RN RN RN NN RN RN NEANT
« estimate how many & "o
resources a task will use © e
and reclaimthe restfor £
work 8
* Kill non-prod if not
available

portion of memory

0) 10 15 20 25 0) 10 15 20 25
time (days)

Utilization

 Resource reclamation
 Choose medium

CPU [%]

capacity limit reservation usage s

. 1,1 \’ \JM’I'W“, W 4 M"’"U"I‘“W w.mgwﬁwnw? X

OOMs Mem [%]

Week 1 (baseline) Week 2 (aggressive)

Week 3 (medium) Week 4 (baseline)

Isolation

 Security isolation
» chroot jail as the primary security isolation mechanism

« Performance isolation
 High-priority LV task(prod) get best treatment
« compressible resources: reclaimed
* non-compressible resources: kill or remove task

Kubernetes

 Evolved from Borg

« An open-source system for automating deployment, operations,
and scaling of containerized applications

* Pods: groups of containers
* Labels

* Replica controller
 Services

kubernetes

