Using Git and GitHub for Your
Project Assignments and Life

Tools for collaborative
team coding on open
source projects

Q: Isn’t this a class about applied distributed
systems?

A: This lecture is about how to lay the
foundations for a good distributed system
application.

Also, Git is a distributed
system

Network Messaging, Messaging Patterns,
Protocols

From Lecture
1.

Algorithms

B U i ‘ d O n Design Patterns
Foundations

Engineering Practices

Tools

The order is important

Engineering
Processes and

Practices

Open-source practices: GitHub to
Governance

Developing telescoping applications

Deploying at scale: continuous
integration and deployment

Operating at scale

*| hire people
°| see lots of resumes.
Living Resume *They are all the same.

eDemonstrate to me what
you can do.

GitHub Is Your

Shared Project
Repositories
Are More
Important

than Your
Personal
Repository

* Open source software depends
on communities of developers

Open source * Communities need governance
s Not Just (rules) for how they operate

Having Code » Community members need to

on GitHub follow the rules
* Community members need to act

professionally

Apache
Software
Foundation

Governance
Examples

* Project members form the Project
Management Committee (PMC)

* Major project decisions are made
through votes by the PMC

* \Votes take place through emails

* Most votes are on public mailing
lists.

* \Voting periods are typically
several days

Some Do’s of
Open Source

Learning Open Source
Practices Is an Important
Part of this Class

What is Git?

Git is a collaborative, distributed version
control system.

e Everyone has their own branch of the code in a local
repository.

e Each branch has a unique ID

e You can work entirely separately and never give back....

If you want to work collaboratively, you have
to combine (merge) branches.

e GitHub provides tools for collaborative coding

Teams need a strategy for how to merge their
branches.

e Communities choose and follow rules (conventions) on
how they use tools: Governance

Some Useful Conventions

and Principles

Foundations for the Apache Way

release
branches

feature
branches

develop hotfixes

Time

Severe bug

Major

e feature for el
e next release production:
e hotfix 0.2

release
Incorporate
bugfix in
develop

Start of
release
branch for

1.0

means the release
after 1.0

—e

From this point on,
Only
bugfixes!

“next release”

S .

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

master

Tag
0.2

See http://nvie.com/posts/a-successful-git-branching-model/

1000 Words about Previous Picture
branch | Description

Master All other branches trace back to here. Final releases are here. Must
always build and pass all tests.

Develop Code for next version of Master. Integration Branch. Everyone’s code
goes back here. Must always build and pass all tests.

Feature Working branches with code not ready for integration. May have 1 or
more developers. Goes away when merged back into Develop.

Release Code that is preparing to go back to the Master. Only bug fixes.

Hotfix Code that fixes a bug discovered in Master that must be fixed

immediately. Merged back to both Master and Develop branches.

Only the Master and Develop branches live forever!

Each project milestone should be a Release branch.

e "Project Milestone 1”, “Project Milestone 2”
¢ This is tied to the CI/CD system that you use.
e This is what you submit for grading

Each team has team-wide Develop branches for each

. : component
'pr leyI n g T h I S e This is also tied to the CI/CD system that you use
or Your

Each team member can have their own branch.

Assignments
(1/2) e Another team member handles the merge

e Communicate any issues using GitHub Issues.

e Make pull requests to merge with the Develop branch.

Note Git is not well set-up for microservices

e |deally you need multiple repositories (each project has its own GitHub
organization)

¢ Since we don’t have this, you need to choose a convention and stick with it
e And document it on your project’s Wiki.

Apply This to
Your

Assignments

(2/2)

One team member serves as release
NEREEES

e Choose using GitHub issues (document the
selection process)

e Rotate for each milestone

e Release manager creates the Project Milestone N
release branches from Develop branches for each
project component

After grading, merge the “Project
Milestone N” branches back to Develop.

Create new branch(es) for Project
Milestone N+1

The above procedure is just one possible
convention.

e It works well with continuous integration while allowing
feature development.

¢ But it could be a lot of overhead for a small team.

A S|de N Ote Apache projects decide their own branch and
merge strategy.

on the

e Decisions are made on the developer discussion list.

Apache Way « Public votes if necessary

e Conclusions are public

What if this convention doesn’t work for the
project?

e That gets discussed on the mailing list as well, in public and
on the record.

e Public votes are cast if necessary.

GitHub

What Is

GitHub?

A public repository for open source code
that is managed with Git.

Tools for helping you manage your code
and your community.

https://guides.github.com

GitHub also integrates Connect a git
with JIRA and other commit to a JIRA
online tools ISSUE.

https://guides.github.com/

See
for a full guide.

e See "Milestones, Labels, and Assignees”

Use this feature to discuss your project.

Using GitHub

Code commit comments tie commits to issues.

Issues

* Include the issue number (#xxx) in your commit

message.
e See also https: .github.com/articles/closin

via-commit-messages/

GitHub issues provide an audit trail for your
work.

https://guides.github.com/features/issues/
https://help.github.com/articles/closing-issues-via-commit-messages/

Using GitHub
Issues for

Assignments

All work must be described using
issues.

Each commit is associated with one
issue.

Use Issues to make pull !dentify team

ts t members using
requests to merge your 5 ions if

branch with Develop. you need help.

* | did all this work on my branch,
and it didn’t get merged, and
someone else on the team did
what | was supposed to do, and...

* | know it doesn’t look like | did

much, but really, | was
contributing to all the WhatsApp
discussions, and | helped write
the code, but all the commits
came from my teammates, and...

Your assignments must work
for the graders

You Must

Have an Audit
Trail

Each team member needs to be
able to point to their specific
contributions

Pull Requests

Submit enough accepted patches or pull
requests and you will be voted into the
project.

Using Pull

Requests for
Assignments

Each team member has her/his own “feature”
branch

Use Pull Requests to merge with Develop

Feature branches must be Use GitHub’s Code
merged back to the
Develop branch by another
team member.

Review tool to
RUEY

All communications about merging take place
using GitHub Issues

Code
Review

z{z @@ -571,8 +571,9 @@ app.get('/uavsar_query/"',function(req, res){

571 // has_wms query, this is the temporary solution, shall be removed later 571 // has_wms query, this is the temporary solution, shall be removed later
572 app.get('/has_wms/', function(req,res) { 572 app.get('/has_wms/', function(req,res) {
57 // var geoServerUrl = "http://gf8.ucs.indiana.edu:8080/geoserver/InSAR/wms?"; 573 // var geoServerUrl = "http://gf8.ucs.indiana.edu:8080/geoserver/InSAR/wms?";
574 | - var geoServerUrl = wmsUrl; 574+ var geoServerUrl;
Write Preview LI Styling with Markdown is supported

|eave a comment

z

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

Cancel Commen

575 | - if (req.server == 'coloring') {geoServerUrl = wmscolorUrl;} 575 | + if (reqg.query.server == 'coloring') {geoServerUrl = wmscolorUrl;}

576 | + else { geoServerUrl = wmsUrl;}
576 var wmsParams = [577 var wmsParams = [
577 "version=1.1.1", 578 "version=1.1.1",
578 ""request=Describelayer", 579 ""request=Describelayer",
Z%Z
13 mmmm html/js/tools.js View
z{z @@ -936,8 +936,19 @@ function selectDataset(row, uid, dataname, heading, radardirection) {
936 if (typeof highresoverlay !== 'undefined') { 936 if (typeof highresoverlay !== ‘'undefined') {
937 mapA.overlayMapTypes.setAt(@, null); 937 mapA.overlayMapTypes.setAt(0, null);
938 } 938 }
939 | - 939 | + //load color mapping one if checked

940 | + if($('#color-mapping-checkbox"').prop(‘checked')) {

941 | + var has_coloring;

942 | + has_coloring = checkwmslayer(uid,"coloring");

943 | + if (has_coloring) {

o L a1 5 Sl A

& > C H {3 GitHub, Inc. [US] https://github.com/GeoGateway/geogateway-portal/commit/ea14960651d3a2c02b45a9f5f2562532dd9f49492diff=split o ‘ @ ® 1=
Showing 2 changed files with 15 additions and 3 deletions. Unified | Split }
5 mmmmm GeoGatewayServer.js Show notes View

Code Release
Process

Choose a Release Manager. Discuss using Issues

The Release Manager creates the Project Milestone N
branch from Develop branch.

Everyone votes on the +1 for working, -1 for not
release. working

Release Manager
manages these pull
requests

Fix bugs directly in the
release branch

Release Manager also merges the Release branch with
Develop

55 Good code documents itself, but...

Using GitHub

Minimally, anything the

Wi ki S fo r LS e T dlEseillee your instructors need to know to

project. check your milestones.

Documentation

Each project milestone has a Wiki entry that includes all
instructions on how to build and test the assignment.

Graders will not spend time
trying to understand your
setup.

Your grader will only look at
the wiki.

https://guides.github.com/features/wikis/

https://guides.github
.com/activities/citabl

e-code/

Make GitHub
Announcement

(Optional)

https://guides.github.com/activities/citable-code/

Some “Apache Way” Lessons

« Community over code.
* Discuss issues publically in an archived, citable manner.

* Assign yourself to issues.
* Volunteer

e Cite the issue(s) associated with each commit.

* Review pull requests for code bases you can’t write to
» Patches -> Apache

e Call votes on important decisions
e Team policies with git branches, code review, issue organization, agile policies
e Software releases
e Granting write access to important branches.

* Make and announce your source code releases.

* And be prepared for what happens next
* Documentation, build systems, bug handling, code licensing, code attributions, ...

APACHE

SOFTWARE FOUNDATION

