
Microservices and
Messaging

Communications in distributed applications

Preview of Upcoming Lectures

Basics of Messaging in
Microservices

Apache Kafka: Cloud
Native Messaging

RAFT: Building Fault
Tolerant Microservice
Systems

Control Plane
Technologies: Consul
and Zookeeper

SWIM: Building
Scalable Microservice
Systems

Blockchain: Towards
Unlimited Scaling

Service Meshes: Real,
Scalable Systems

Browser

Web Interface Server

Application Server

Server SDK for API

Client SDK for API

Database 1

Resource Plugins

Data Store
Analytics
Engines ...

HTTPS

HTTP or TCP/IP

Three-Tiered
Architecture
Octopus Diagram:
this is a “north-
south” monolithic
application.

Let’s decouple
this into

microservices

Application Server

Server SDK to API

Resource Plugins

API Server

Application
Manager Metadata Server

Basic Components of the Application Server
Become Microservices

Communications between the microservices on the left are over-the-wire and need to be
non-blocking in many cases.

Application
Manager

Metadata
ServerApplication

ManagerApplication
ManagerApplication

ManagerApplication
ManagerApplication

Manager

Metadata
ServerMetadata

ServerMetadata
ServerMetadata

ServerMetadata
Server

API Server
API Server

API Server

API Server

Application
Manager

Metadata
Server

Replicate the
Microservices

How Can We Make This
Work?

Answer: Messaging and Coordination

Microservices communicate with other
microservices via messaging over networks.

Microservices need a way to find each other
dynamically: no hard-coded connections.

Microservices need to communicate:
message formats or data models

At Internet
Scale

Services have IP addresses and domain
names

Domain Name Servers match services’
domain names to IP addresses

Browsers and servers communicate over
HTTP with HTML messages

Humans decide where to go

REST generalizes this for machine-to-
machine communications

HTTP Summary

REST generalizes this for machine-to-machine communication

HTTP Features

• HTTP official specifications
• https://tools.ietf.org/html/rfc2616

• Request-Response
• Uses URLs to identify and address

resources.
• Stateless (but extendable)
• Limited set of operations

• GET, PUT, POST, DELETE, HEAD, ...
• Transfers hypermedia in the body

• HTML, XML, JSON, RSS, Atom, etc.
• Extendable by modifying its header

• Security, etc.
• Point to point security

• TLS: transport level
• Well defined error codes

https://tools.ietf.org/html/rfc2616

That’s How
the Internet

Works

We need to scale this down
to specific, coordinating
distributed applications.

Humans aren’t around to
make all the decisions

What Are Some
Problems Using HTTP for

Microservices?

Some Answers

• HTTP is point-to-point
• Sender and receiver are tightly coupled
• How do you send messages to more than one recipient?

• Request-response
• Block until you get a response
• How do you push a message back later?

• Messages (HTML) are designed for human, not machine consumption
• Hypermedia As The Engine Of Application State (HATEOAS), Swagger attempt

to address this for REST

HTTP is not designed for more complicated messaging scenarios

The Microservice Situation

API GatewayUI Server
N Jobs

Microservice 1

Microservice 2

Microservice 3

Microservice 1
Microservice 1

Microservice 2
Microservice 2

Microservice 3
Microservice 3

Some questions:
• Do I have at least one replica of Microservice 1 running?
• Is Replica 2 of Microservice 1 up and running?
• Microservice 3 uses Master-Worker, and the Master just failed.

What do I do?
• Replica 2 for Microservice #2 just came up and needs to find

configuration information. How can it do that?

Messaging or Data Plane Information or Control
Plane

Service Mesh (Microservice) Terminology

Messaging in Distributed
Systems

We’ll use Advanced Message Queuing Protocol (AMQP) and RabbitMQ
overviews as examples

This is not an endorsement of these for the assignments!

API Server

Application Manager Metadata Server

A Simple Microservice Collection

How do these services communicate?

API Server

Application Manager Metadata Server

Point to Point Communication Is Brittle

• Combinatorial problems when you have > 3
services

• How do you manage load balancing and
service instance discovery?

• How do rewire communications when you
need to add more service instances?

• What if multiple services need to receive the
same message?

API Server

Application Manager Metadata Server

Messaging Systems Solve Many of These
Problems

Message
Broker

API Server

Application Manager Metadata Server

They Work Well with Service Replication

Message
Broker

Application Manager
Application Manager

Metadata Server
Metadata Server

API Server
API Server

Message Queuing Systems Are a Popular
Type Messaging System

They consolidate the control and data planes

Value of Message Queuing Systems

• They are queues for messages....
• You can put lots of messages in a queue , which the message broker

will deliver with various qualities of service
• In order
• Exactly once
• At most once
• At least once

• Many-to-many rather than just one-to-one
• Can support both push and pull messaging
• A bit like email for machines

Value of Message Systems, Continued

• Messaging systems remove the need for microservices to know too
much about each other
• Services just need to know how to connect to the message broker.
• The network locations and specific instances of the services can change over

time.
• Decouple the logical system from the physical system

• Synchronous and asynchronous messages are supported.
• More efficient:
• RabittMQ can multiplex multiple channels of communication over a single

TCP/IP connection
• Kafka can support high throughput

Message Exchange Patterns

See the RabbitMQ tutorial for more examples

Point to Point Communication

• Publisher (P) sends a message to the broker, which puts it in queue
• The broker routes to the appropriate Consumer (C) using routing keys
• Messages are pushed to the consumer
• The publisher doesn’t explicitly know how to connect to the consumer.
• The broker handles this

Work Queue

• Consumers that have capacity to work take messages from the queue
• Multiple consumers listen to the same queue
• Each message is delivered to only one consumer
• The broker can use round robin or other scheduling strategies for routing messages to

individual consumers
• You can program/configure consumers to ACK messages and block until they are finished

processing a message
• If a consumer crashes, the broker can resend a message
• Consumers can join or leave the pool dynamically

Remote Procedure Calls with Messaging

• We can make more sophisticated Work Queues by adding a second queue
(callback or reply) to the broker.

• This allows the server to send back complicated replies to the client or to
another recipient
• Not just ACKs to the broker

• Now both end points act as both publishers and consumers.

Publish/Subscribe

• Publisher sends a message to multiple queues (same broker) via an
Exchange (X)
• X and the queues are all in the same broker process

• Consumers attach to different queues
• This allows multiple consumers to receive the same message
• Variations: Fanout, Routing, and Topic-Based Pub/Sub

Some Applications

Simple
Microservice
Work Queue
with
RabbitMQ

Publisher (API Server): pushes a request for
work into the queue

Message Queue should implement “only
deliver message once to one consumer”,
round-robin

Consumer: Sends an ACK after completing
the task.

If a Queue-Client closes before an ACK,
resend message to a new consumer.

API Server

AppMan Worker C

AppMan Worker B

AppMan Worker A

Broker

MSG 1, 2, 3, 4, 5

MSG 2

MSG 1

MSG 3

ACK

ACK

ACK

• 5 Job requests come to the API Server
• API Server publishes to Broker
• Broker sends messages to workers in round-robin
• Workers send ACKs when done
• If Broker detects a closed connection before an ACK, sends

MSG to a different worker

Simple Work Queue

What Could
Possibly Go

Wrong?

Jobs take a long time to finish, so
ACKs may not come for hours.
• Durable connections needed between

Consumers and Message Queues
• When is this a failure condition?

Detecting failures is hard, but
resubmitting can be expensive
• Jobs may get launched on an external

resource (supercomputer or cloud)

Summary

Message systems route communications
between distributed entities.
• You don’t need to know the physical addresses

Support multiple messaging patterns out of
the box.
• You don’t have to implement them.

Queues are a powerful concept within
distributed systems.
• Entities can save messages in order and deliver/accept

them at a desirable rate.
• Queues are a “primitive” (foundational) concept that

you can use to build more sophisticated systems.

Which
Messaging
Software to
Choose?

You have many choices

• RabbitMQ, Kafka, NATS, Apache Pulsar, ZeroMQ...
• This is a team issue: consider options, make a

choice, and go with it.

AMQP messaging system implementations
are not cloud-native
• They must be configured as highly available

services.
• Primary + failover

• No fancy leader elections, etc as used in Zookeeper
+ Zab or Apache Kafka

• Have scaling limitations, although these may not
matter at our scales.

Topic Exchange

• Message Queues bind
using routing patterns
instead of routing keys.
• A Publisher sends a

message with a routing
key.
• Exchange will route to all

Message Queues that
match the routing key’s
pattern

Basic Concepts

An AMQP Server (or Broker)

• Accepts producer messages
• Sends to 0 or more Message Queues using routing

keys
Exchange

• Routes messages to different consumers
depending on arbitrary criteria

• Buffers messages when consumers are not able to
accept them fast enough.

Message
Queue

Producers and Consumers

• Producers only interact with Exchanges
• Consumers interact with Message Queues
• Consumers aren’t passive
• Can create and destroy message queues

• The same application can act as both a publisher and a consumer
• You can implement Request-Response with AMQP
• Except the publisher doesn’t block

• Ex: your application may want an ACK or NACK when it publishes
• This is a reply queue

The Exchange

• Receives messages
• Inspects a message header, body, and properties
• Routes messages to appropriate message queues
• Routing usually done with routing keys in the message payload
• For point-to-point messages, the routing key is the name of the message

queue
• For pub-sub routing, the routing key is the name of the topic

• Topics can be hierarchical

Message Queue Properties and Examples
• Basic queue properties:

• Private or shared
• Durable or temporary
• Client-named or server- named, etc.

• Combine these to make all kinds of queues, such as
• Store-and-forward queue: holds messages and distributes these between

consumers on a round-robin basis.
• Durable and shared between multiple consumers.

• Private reply queue: holds messages and forwards these to a single
consumer.
• Reply queues are typically temporary, server-named, and private to one consumer.

• Private subscription queue: holds messages collected from various
"subscribed" sources, and forwards these to a single consumer.
• Temporary, server-named, and private

Consumers and Message Queues

• AMQP Consumers can create their own queues and bind them to
Exchanges
• Queues can have more than one attached consumer
• AMQP queues are FIFO
• AMQP allows only one consumer per queue to receive the message.
• Use round-robin delivery if > 1 attached consumer.

• If you need > 1 consumer to receive a message, you can give each
consumer their own queue.
• Each Queue can attach to the same Exchange, or you can use topic matching.

Publish-Subscribe Patterns

• Useful for many-to-many messaging
• In microservice-based systems, several different types of components

may want to receive the same message
• But take different actions
• Ex: you can always add a logger service

• You can always do this with explicitly named routing keys.
• You may also want to use hierarchical (name space) key names and

pattern matching.
• gateway.jobs.jobtype.gromacs
• gateway.jobs.jobtype.*

The Message Payload

• Read the specification for more details.
• In general AMQP follows the header-body format
• The message body payload is binary
• AMQP assumes the body content is handled by consumers
• The message body is opaque to the AMQP server.

• You could serialize your content with JSON or Thrift and deserialize it
to directly send objects.

Direct Exchange

• A publisher sends a message
to an exchange with a specific
routing key.
• The exchange routes this to

the message queue bound to
the routing key.
• A consumer receives the

messages if listening to the
queue.
• Default: round-robin queuing

to deliver to multiple
subscribers of same queue

Queue.Declare queue=app.svc01
Basic.Consume queue=app.svc01
Basic.Publish routing-
key=app.svc01

Fanout Exchange

• Message Queue binds to an
Exchange with no argument
• Publisher sends a message

to the Exchange
• The Exchange sends the

message to the Message
Queue
• All consumers listening to

all Message Queues
associated with an
Exchange get the message

Topic Exchange

• Message Queues bind
using routing patterns
instead of routing keys.
• A Publisher sends a

message with a routing
key.
• Exchange will route to all

Message Queues that
match the routing key’s
pattern

More Examples

• Has several nice examples of classic message
exchange patterns.

• https://www.rabbitmq.com/getstarted.html

RabbitMQ
Tutorial

• Many publishers
• Absolute and partial event ordering are hard

problems
• Broker failure and recovery

What It
Omits

https://www.rabbitmq.com/getstarted.html

Work Queue, Take Two
• Orchestrator pushes work into a queue.
• Have workers request work when they are not busy.

• RabbitMQ supports this as “prefetchCount”
• Use round-robin but don’t send work to busy workers with outstanding ACKs.
• Workers do not receive work requests when they are busy.
• Messages wait in queue...

• Worker sends ACK after successfully submitting the job to an external resource.
• This only means the job has been submitted
• Worker can take more work

• A Monitor application handles the state changes on the supercomputer
• Publishes ”queued”, “executing”, ”completed” or “failed” messages

• When job is done, Orchestrator creates a “cleanup” job
• Any worker available can take this.

Work Queue, Take 2

Orchestrator Broker

AppMan Worker

Job Monitor

1a. Ready

2. RunJob

3. ACK

AppMan Worker

5. Done

1b. Ready

8. CleanUp

9. ACK

0. RunJob

Experiment Metadata
Manager

4., 6., 10. Job Status

7. Cleanup

AppMan Worker
AppMan Worker

Job Monitor
Job Monitor

AppMan Worker
AppMan Worker

