
Containers
February 10th 2022
Suresh Marru

Project 1 Reflections
• Experiences in developing.
• Lessons Learned.
• Friendly peer-review/knowledge sharing homework.
• Provide constructive criticism as a software user.

Rapid addition of Project 1 Features

Spin it
fast

YES
NO

O
R

Imagine we have weekly
project goals from here on

Imagine you will be
deducted 5 points each
time your code breaks?

The Matrix From Hell

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Developme
nt VM QA Server Single Prod

Server
Onsite
Cluster

Public
Cloud

Contributo
r’s laptop

Customer
Servers

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

M
ul

tip
lic

ity
 o

f G
oo

ds
M

ul
tip

ili
ci

ty
of

 m
et

ho
ds

fo

r t
ra

ns
po

rti
ng

/s
to

rin
g

Do I w
orry about how

goods interact (e.g.
coffee beans next to

spices)

Can I transport quickly
and sm

oothly
(e.g. from

 boat to train to
truck)

Cargo Transport Pre-1960

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

A matrix from hell

M
ul

tip
lic

ity
 o

f G
oo

ds
M

ul
tip

lic
ity

 o
f m

et
ho

ds
 fo

r
tra

ns
po

rti
ng

/s
to

rin
g

D
o I w

orry about how

goods interact (e.g. coffee
beans next to spices)

C
an I transport quickly

and sm
oothly

(e.g. from
 boat to train to
truck)

Solution: Intermodal Shipping Container

…in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another

A standard container that is
loaded with virtually any
goods, and stays sealed
until it reaches final delivery.

Static website Web frontend User DB Queue Analytics DB

Development
VM

QA server Public Cloud Contributor’s
laptop

Docker is a shipping container system for
code

M
ul

tip
lic

ity
 o

f S
ta

ck
s

M
ul

tip
lic

ity
 o

f h
ar

dw
ar

e
en

vi
ro

nm
en

ts

Production
Cluster

Customer Data
Center

D
o services and apps

interact appropriately?

C
an I m

igrate sm
oothly

and quickly

…that can be manipulated using
standard operations and run
consistently on virtually any
hardware platform

An engine that enables any
payload to be encapsulated
as a lightweight, portable,
self-sufficient container…

Containers

Hypervisor Virtualization
• Hypervisors provide software

emulated hardware and support
multiple OS tenants.

• Type 1 Hypervisors run directly on
the hardware

• Kernel-based Virtual Machine (KVM)
• Xen: Amazon uses (or used) this

• Type 2 Hypervisors run as another
program in the HostOS

• Virtual Box
• VMWare

Drawbacks to Using Hypervisors

• Virtual Machines using hypervisors access virtual hardware.
• This allows VMs to run a wide range of guest operating

systems.
• But it adds overhead

• VMs take a long time to startup.
• Performance is worse: software-emulated hardware
• VMs take up a lot of resources. Limited number of VMs can run on the

real hardware

Operating System (OS) Virtualization
• The OS can run other OS instances as

separate processes.
• No hardware virtualization or emulation.
• Tenants share the OS kernel with the host

OS.
• The guest (tenant) OS instances are

shielded from each other.
• This limits the OS options for the tenants

• But performances is much greater
• And you can fit a lot more OS VMs onto the

host.
• But not as secure as Hypervisor Virtualization

Linux Containers (LXC)
• Cgroups: a Linux kernel feature that limits, accounts for, and

isolates the resource usage (CPU, memory, disk I/O, network, etc.)
of a collection of processes.

• Cgroups lets you carve up the hardware into continuous, resizable pieces
• Namespace Isolation: groups of processes are separated such

that they cannot "see" resources in other groups.
• For example, a PID namespace provides a separate enumeration of

process identifiers within each namespace
• Shield container processes from the host and other containers’ processes.

https://en.wikipedia.org/wiki/Cgroups

Linux Container Takeaways
• When combined, cgroups and namespace isolation let you run

much lighter weight VMs.
• Less resource usage overhead for running VMs
• VMs can start and stop much more quickly

• You can do further tricks to optimize containers.
• You may be able to run many containers on a single VM

Containers vs. Virtual Machines
• VMs:
Ø VMs are fully contained – everything you need is

there
Ø VMs are independent of the host operating system
Ø All OS resources and tools are available

• Containers:
Ø Compact – minimal OS parts to run, rely on host
Ø Compact nature makes them more portable
Ø Robust ecosystem – many pre-made containers

available

Docker 101
Wrapping your Microservices in Containers

What is Docker?
• Docker packages LXC and other tools to make creating and

using images easy, standardized
• No more DIY containers

• You can run Docker on Linux desktops and servers.
• Other OS’s can run Docker inside a VM

• MacOS: Use Virtual Box to run a Linux flavor

Example: Set up a MySql Database

• This creates a container named “db”
• The container runs in the background (--detach)
• We pass the environment variable MYSQL_ROOT_PASSWORD to

the container.
• The container maps the host’s port 4407 to its internal port 3306 (--

publish)
• 3306 is the default MySQL port.

• We run the image mysql:latest

docker run --name db --detach --env MYSQL_ROOT_PASSWORD=123 --publish
4407: 3306 mysql:latest

The command returns with a UID for our image.

What Happens (1/2)?

What Happens (2/2)?
• The client command contacts the Docker daemon on your local

host.
• Docker daemon looks for an image named “mysql-latest”.

• Your local repository
• DockerHub

• If necessary, the image is copied to your local repository.
• The image is used to create an running container instance.

Summing up

What Happens if I Run the Command
Again
• Give the container a different name (“db2”)
• Change the --publish external port to use something besides

4407.
• You’ll get another MySQL DB identical to the first.
• Do it again. You can quickly bring up multiple independent,

isolated MySQL DBs on your laptop.

What’s Next?
• You can now connect to your image and run MySQL startup

scripts through an interactive shell.
• docker exec -it db /bin/bash: you get a command prompt
• Remember: “db” is the name of the instance.

• But this is not the best way to do your specific configurations.

Make Your Own Images
• Use the “docker build” command to create your own images.
• Use a Dockerfile to specify exactly how you want your image to

be created.
• See next slide

• Save your image to a repository after you build it with “docker
push”

• You don’t need to run “docker build” every time
• See “Docker Hub” in a couple of slides.

A basic apache server. To use either add or bind mount content under
/var/www
FROM ubuntu:12.04
MAINTAINER Kimbro Staken version: 0.1

RUN apt-get update && apt-get install -y apache2 && apt-get clean && rm -
rf /var/lib/apt/lists/*

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2

ADD ./index.html /var/www/html/

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]https://github.com/kstaken/dockerfile-examples

Keyword Description

FROM The base image to use

RUN Execute these commands on the base image and make a new
image.

ENV Set image-wide environment variables; these can also be used
by other elements of the Dockerfile

CMD Executes the specified command. Use this to start services.

ADD Copies all specified files and directories from the host to the
image.

EXPOSE Specifies the ports that the container will listen to

Some Dockerfile commands

Docker Hub
• Docker Hub is a repository for Docker images.
• You interact with it a lot like GitHub

• docker push command pushes a local image to Docker Hub
• Ex: docker push yourUserName/gateway-service-X will push a local image named

“yourUserName/gateway-service-X” to Docker Hub.
• You need to use Docker tags and namespaces to do this correctly.

• You can check out your own images anywhere
• Run docker run yourUserName/gateway-service-X on Travis-CI, for example

• Use Docker Hub to also get common images from trusted providers
• “docker search”

• You can connect your images to GitHub repos to trigger automatic builds if
you have a build file.

Make Multiple Containers
• You can now create another container to run a Web server and

connect to your DB.
• Use your favorite technology

• Node.js, Tomcat + JSP, PHP, etc.
• You could also choose to run both the web application and the

DB in the same container.
• Which is better?

Connecting Containers
• Use linking to allow containers to communicate with each other

securely without exposing ports.
• A linked container shares its environment variables

Link: the db doesn’t need to expose a port #

Composing Containers
• Docker Compose is a tool for defining and running multi-

container Docker applications.
• Docker Compose lets you specify in a single YAML file how to

create all the containers you need on a single host.
• docker-compose build: creates instances for all the images

specified in docker-compose.yml

Example docker-
compose.yml

• This example creates 2
services
• users-service
• db

• build: this tells Docker
Compose where to find
the Dockerfile.

• Note users-service
depends on db

• docker-compose up will
start all the services.

Data Volumes and the Storage Driver
• When a container is deleted, any data written to the container

that is not stored in a data volume is deleted along with the
container.

• A data volume is a directory or file in the Docker host’s
filesystem that is mounted directly into a container.

Docker volumes allow containers to mount the host’s file system.

$ docker run -d -P --name web -v /data:/data training/webapp python
app.py
This will mount the host’s /data directory to the /data directory in
the container.

Docker Big Picture
Some slides courtesy of

http://www.slideshare.net/dotCloud/docker-intro-november

http://www.slideshare.net/dotCloud/docker-intro-november

Docker
• Docker replaces the need

for DIY containers
• Docker uses LXC

containerization + AuFS
• AuFS lets Docker

containers share common
files

• AuFS also allows you to
have efficient version
control of container images

Because each container has its own thin writable container layer, and all changes are stored in this container layer, multiple containers can share access to
the same underlying image and yet have their own data state.

Docker Goals
• Package an application and all its dependencies in a single

container.
• Shield applications from host OS dependencies
• Shield applications from other applications’ conflicting

dependencies.
• Provide standard docker images for common applications.
• Allow you to assemble containers into composite applications

Docker and Microservices
• You can pack a lot of docker containers into a host computer

without adding a lot of virtualization overhead.
• Sounds like a good fit for microservices.

• One microservice per container

Why are Docker containers lightweight?

Bins/
Libs

App
A

Original App
(No OS to take
up space, resources,
or require restart)

App Δ

Bins/

App
A

Bins/
Libs

App
A’

Guest
OS

Bins/
Libs

Modified App

Copy on write
capabilities allow
us to only save the
diffs
Between container A
and container
A’

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual server

App
A

Guest
OS

Bins/
Libs

Copy of
App

No OS. Can
Share bins/libs

App
A

Guest
OS

Guest
OS

VMs Containers

AuFS enables these LXC enables this

Changes and Updates

Docker Engine

Docker
Container

Image
Registry

Docker Engine

Push

Update

Bins/
Libs

App
A

App Δ

Bins/

Base
Container

Image

Host is now running A’’

Container
Mod A’’

App Δ

Bins/

Bins/
Libs

App
A

Bins/

Bins/
Libs

App
A’’

Host running A wants to upgrade to A’’. Requests
update. Gets only diffs

Container
Mod A’

https://docs.docker.com/storage/storagedriver/

Docker: Infrastructure as Code
• In short, Docker lets you define in script files everything about each of

your microservices.
• Combine this with CI/CD systems to deploy EACH microservice.

• Your development to test to production environments should be identical
and reproducible.

• Testing and production deployments for each service should be infinitely
clone-able.

• This is not elasticity, but it is a prerequisite.
• Docker and other containers have much less overhead

Project 2 (more to come)
• Using a tool such as JMeter, evaluate the scaling of your system
• Using JMeter or a similar tool, measure and analyze the performance

of your system’s throughput under incrementally increasing loads
• Test with 1, 3, and 5 replicas (fixed) of each of your services.
• At what point does your system fail?
• What about your system failed?
• Test your system with elastic resource management (that is, system

grows under load, contracts when resources are not needed).
• Inject failures and demonstrate that your system continues to function

with JMeter-created or similar loads.

