
CYBERINFRASTRUCTURE
INTEGRATION RESEARCH CENTER
PERVASIVE TECHNOLOGY INSTITUTE

Course Recap
April 28th 2022

Cyberinfrastructure Integration
Research Center (CIRC)

CIRC’s core mission is to
accelerate research, discovery
and collaboration through the
creation, integration and
operation of user-centric
cyberinfrastructure that benefits
scientific communities.

Course Instructors
Marlon Pierce Suresh Marru

What did we expect you to get out of this class?

A fusion of conceptual skills and “scientific way” of making choices.

The course is tailored to use tools and technologies relevant in 2022
but our expectation is you will learn how to make choices not
necessarily be a tutorial on a buzzy technology.

Our definition of a good student is someone who understand the
difference between the two.

Use case for Distributed Systems

1. Ingest 2.Convert 3.Visualize

Climate Data

Air Quality Data

Satellite Data

User Friendly
Views

Rich Scientific Data Formats Science Processes

Testbed for Learning: full stack distributed system

Platform

Microservices

Data Sources

Cloud Storages

HTTP

Ensure CI/CD.

Incorporate a new
use case.

Demonstrate
Evolvability.

Emphasize Fault
Tolerance and
Scalability.

Performance
Engineering.

Iterate
Architecture.

Build a small
distributed system.

Provide project
context for peers.

Make the software
is deployable.

Reflect back on
case study and
your testbeds.

Define your
testing strategy

and test.

Case Study:
Apache Airavata
Custos.

Cloud-Native Architecture Principles

Services should be able
to evolve independently,

scale independently.

Each service is broken by
a functional capability

Programming Language “polyglotism”

Cyber Security at all layers:

Go beyond
Authentication and

Authorization

Securing all
communications

gRPC, Thrift, Protocol Buffers

Continuous Integration Continuous Delivery

Req Plan Code Build Test Release Deploy Manage Monitor

Essential Components

README
Information
Architecture UX Design Peer Review

Describe the project overview,
your team introduction in
README in your git repo.

Napkin Diagram

Outcome

Name and User Type Goals

Actions

Articulate the project as a user
story.
Add this diagram to README
and describe it in words.

A user-centric understanding of
the project.

Organise discover, explore
options, develop wireframes and
prototypes

Flow Charts

Outcome

Sketching
Wireframes
Journey Mapping
Add this to your README

Solution Exploration

Visual articulation of the solution,
validation of ideas and concepts,
test with users

Mockups

Outcome

High-Fidelity Visual Design
Rapid Prototyping
Mockups
A/B Testing
Add this to your GitHub WIKI

Solution Validation

Validate, learn, plan for the next
iteration

Methods

Outcome

Accessibility
Usability Testing
Feedback Integration
Interactive Design

Solution Scalability

Learn

Measure

Build

Pragmatic Innovation
Inspiration Ideation Implementation
Design Challenge
You should let all kind of ideas float.
Dream Big.

New Opportunity for Design
Get realistic.
Do not loose your ambitious thoughts.
Plan on “evolution”.

Innovative Solution
If you shoot for the moon, you will at least
reach the roof.
You should not stop at the roof and still plan
to launch a rocket.

Di
ve

rg
e

Converge Dive
rge Converge

Double Diamond Design Process

Static website Web frontend User DB Queue Analytics DB

Development
VM

QA server Public Cloud Contributor’s
laptop

Docker is a shipping container system for
code

M
ul

tip
lic

ity
 o

f S
ta

ck
s

M
ul

tip
lic

ity
 o

f h
ar

dw
ar

e
en

vi
ro

nm
en

ts

Production
Cluster

Customer Data
Center

D
o services and apps

interact appropriately?

C
an I m

igrate sm
oothly

and quickly

…that can be manipulated using
standard operations and run
consistently on virtually any
hardware platform

An engine that enables any
payload to be encapsulated
as a lightweight, portable,
self-sufficient container…

Container recap
• “Containers encapsulate the application environment,

abstracting away many details of machines and operating
systems from the application developer and the deployment
infrastructure.”

• “Because well-designed containers and container images are
scoped to a single application, managing containers means
managing applications rather than machines. This shift of
management APIs from machine-oriented to application
oriented dramatically improves application deployment and
introspection.”

Infrastructure as Code
• In short, Docker lets you define in script files everything about

each of your microservices.
• Combine this with CI/CD systems to deploy EACH

microservice.
• Your development to test to production environments should be identical and reproducible.
• Testing and production deployments for each service should be infinitely clone-able.

• This is not elasticity, but it is a prerequisite.
• Docker and other containers have much less overhead

Applied Learning

Implementation

Testbed Project

Distributed Systems Architecture

Establishing a
testbed Implement

Architecture
Performance
Analysis

Add new
capabilities

Case Study

Develop Basic
Architecture and
iterate on it Identify metrics that

can potentially
prevent achieving
objectives.

Analyze identified
metrics that could
negatively impact
functionality,
scalability and
reliability.

Validate the
architecture is ready
for evolution
without breaking
reliability and
elasticity.

Use your learning
and apply them to
an already
implemented
system.

