Course Recap

April 28t 2022

CYBERINFRASTRUCTURE

INTEGRATION RESEARCH CENTER

PERVASIVE TECHNOLOGY INSTITUTE

Cyberinfrastructure Integration
Research Center (CIRC)

Course Instructors

CIRC’s core mission is to Marlon Pierce Suresh Marru
accelerate research, discovery

and collaboration through the
creation, integration and
operation of user-centric
cyberinfrastructure that benefits
scientific communities.

The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Develop Think of

General Theories Interesting
G | theori b .
coigiesr?er:t Sv(i)trrllerilcr:;ltjztr a?l QueStlonS

available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the

phenomenon | am

wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...

What did we expect you to get out of this class?

A fusion of conceptual skills and “scientific way” of making choices.

The course is tailored to use tools and technologies relevant in 2022
but our expectation is you will learn how to make choices not
necessarily be a tutorial on a buzzy technology.

Our definition of a good student is someone who understand the
difference between the two.

Use case for Distributed Systems

Rich Scientific Data Formats Science Processes

Climate Data

Air Quality Data 1. Ingest ’ 2.Convert ’ 3.Visualize
Satellite Data \-/ _/ \./

User Friendly
Views

Testbed for Learning: full stack distributed system

Microservices

+4+
+4+

Platform

Cloud Storages

Case Study:

peﬂne your Apache Airavata
testing strategy Custos
and test. '

Reflect back on
case study and
your testbeds.

Ensure CI/CD.

Demonstrate
Evolvability.

Incorporate a new
use case.

Build a small
distributed system.

Emphasize Fault
Tolerance and
Scalability.

Make the software
is deployable.

lterate

Provide project Architecture.

context for peers.

Performance
Engineering.

Cloud-Native Architecture Principles

Each service is broken by
a functional capability

Services should be able

to evolve independently,

scale independently.

G

>
o
|

N

®

D

N

TIOBE Programming Community Index
Source: www.tiobe.com

30
25
20
&
o
215
=
o
10
5
0
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
w= Python == C Java == C++ == C# == Visual Basic JavaScript == Assembly language == SQL Swift

Programming Language “polyglotism”

Cyber Security aaII layers:

Go beyond
Authentication and
Authorization

Securing all
communications

gRPC, Thrift, Protocol Buffers

gRPC
Stub

Ruby Client

gRPC Server

C++ Service

Android-Java Client

- Release ~ Deploy - Manage > Monitor

Continuous Integration Continuous Delivery

Essential Components

README

Describe the project overview,
your team introduction in
README in your git repo.

Name and User Type Goals

0 Actions

Napkin Diagram

Articulate the project as a user
story.
Add this diagram to README

and describe it in words.

Outcome

A user-centric understanding of
the project.

Information
Architecture
Organise discover, explore

options, develop wireframes and
prototypes

v
v

v
v

\
\

Flow Charts

Sketching

Wireframes

Journey Mapping

Add this to your README

Outcome

Solution Exploration

UX Design

Visual articulation of the solution,
validation of ideas and concepts,
test with users

Mockups

High-Fidelity Visual Design
Rapid Prototyping

Mockups

A/B Testing

Add this to your GitHub WIKI

Outcome

Solution Validation

Peer Review

Validate, learn, plan for the next
iteration

Methods

Accessibility
Usability Testing
Feedback Integration
Interactive Design

Outcome
Solution Scalability

Pragmatic Innovation

Inspiration
Design Challenge

You should let all kind of ideas float.
Dream Big.

Q
éc)
S
'S

Ideation

New Opportunity for Design

Get realistic.

Do not loose your ambitious thoughts.
Plan on “evolution”.

Implementation

Innovative Solution
If you shoot for the moon, you will at least

reach the roof.
You should not stop at the roof and still plan
to launch a rocket.

Double Diamond Design Process

—————
~

’’’’’

Stakeholder
Approved
. Designs

Requirement y
Assumptions A

Discover Define Develop Deliver

\/ Problem \/
Understanding

S~ -
-~ -
~ - -
~- ——
-~ -
o o . - -
---------—--___

Multiplicity of Stacks

Multiplicity of hardware

Docker is a shipping container system for
code

®® Static website ¥ User DB o2’ Web frontend :: Queue “‘ Analytics DB

An engine that enables any
payload to be encapsulated

as a lightweight, portable,
self-sufficient container...

...that can be manipulated using
standard operations and run

consistently on virtually any
hardware platform

environments

.

— ﬂ
[=)
.

.

Development QA server Customer Data Public Cloud Production Contributor’s
VM Center Cluster laptop

¢ A1@reudoidde joeiaul
sdde pue sadiAles 0Q

Apoinb pue
Alyioows ajelbiw | ue)

Container recap

» “Containers encapsulate the application environment,
abstracting away many details of machines and operating

systems from the application developer and the deployment
infrastructure.”

* “Because well-designed containers and container images are
scoped to a single application, managing containers means
managing applications rather than machines. This shift of
management APls from machine-oriented to application
oriented dramatically improves application deployment and
iIntrospection.”

Infrastructure as Code

* In short, Docker lets you define in script files everything about
each of your microservices.

« Combine this with CI/CD systems to deploy EACH
microservice.

* Your development to test to production environments should be identical and reproducible.
« Testing and production deployments for each service should be infinitely clone-able.

 This is not elasticity, but it is a prerequisite.
 Docker and other containers have much less overhead

Applied Learning

Establishing a
testbed

Develop Basic
Architecture and
iterate on it

Distributed Systems Architecture

Testbed Project

Implement Performance Add new
Architecture Analysis capabilities

Implementation

Case Study

Use your learning
and apply them to
an already
implemented
system.

