
Advanced Raft Topics

Continuous Delivery for Stateful Services, Log Management, and
Security Considerations

Log-Centric
Architecture
and Raft
Recap

Log-centric design is a way to
build fault tolerant distributed
systems by recording state
changing messages

Replay messages in order to
recover a particular state

Raft is a popular algorithm for
maintaining state log consistency
across multiple servers through
consensus

Client Raft Leader

Raft Follower

Raft Follower

RAFT

Clients are external applications that send CRUD-like requests.

The client only interacts with the leader.

The leader updates the followers

A follower can become a new leader.

Raft Cluster Membership
Changes

Moving from one set of members to another

Raft Clusters
Are Quasi-
Static

During operations, all members know
about all other members.

This information can be in a log message

Membership in the cluster is fixed.

Consensus is based on the number of all
members, even if they are unresponsive.

Changing a
Raft Cluster

Imagine if you need to grow or shrink
the Raft cluster

Or update the Raft server versions

Or move to new host servers

Can you do this without taking the
system down?

All at Once Updates:
Blue-Green and Canary

Deployments

https://martinfowler.com/bliki/BlueGreenDeployment.html

This is an all-at-once approach.
What if you wanted to do this more

incrementally?

“Rolling update – Deploy without downtime”

v2v2 v1

Load Balancer

This is fine for simple, stateless services in work queues, but many services are
stateful. We need to make sure both old and new parts of the systems can access

messages.

Updating RAFT Configurations

• In RAFT, all the members of cluster know about each other so that
they can run elections
• You can use RAFT messages to update configuration information

while the system is operating.

Leader

New
Follower

Old
Follower

“I’m now at
156.56.104.10”

But You Have to Be Careful!

Accidental Elections: RAFT leaders will abdicate and start an
election if they lose contact with too many followers. Followers
will try to become leaders if they lose contact with the leader

Consensus Problems: If you are growing or shrinking the
cluster, this can become even more complicated because the
number of servers required for a majority changes.

The Raft Configuration Update
Approach
“Soft” updates without disruption to clients or major switchovers, and with ability
to roll back (by rolling forward).

Joint
Consensus
in Raft

During the transition, all the servers (old
and new) must belong to a joint
configuration

If the leader fails, the new leader can take
over the cluster changing process

The leader will update the new followers’
logs until they are up to date.

Log entries from clients are replicated
across the entire joint configuration.

Raft Updates Take Two Steps

• Each stage is signaled by a special log message
• Step 1: “Update Configuration” tells everyone that new members are

joining
• Step 2: “New Configuration” tells the members of the new cluster

that the transition is complete

Raft Leader
R1

Raft Follower
R2

Raft Follower
R3

Raft Follower
R4

Raft Follower
R5

Old Config

New Config

Joint Configuration Phase (Step 1)
Joint Config (C_old,new): R1, R2, R3, R4,
R5, R6

Admin
Client

The leader will use normal Raft processes to
bring the logs of the new followers up to date.

Raft Follower
R6

“Update
Configuration”

“UC”

“UC”

“UC”“UC”“UC”

Raft Uses Raft to Update Raft

• Let’s assume the leader survives while we are updating from C_old to
C_new.
• When the leader receives a message to update the configuration, it

stores this message as a log entry.
• This message would contain information on the new configuration,

including how to reach the new members.

Joint
Configuration

Stage

• The leader replicates the “update
configuration” log entry to all members of
C_old and C_new
• C_old,new is the combined group
• The leader commits the entry once it has

majority consensus from the combined
C_old,new group
• If the leader crashes, another eligible

candidate can be come the leader of the
joint configuration

Raft Leader
R1

Raft Follower
R2

Raft Follower
R3

Raft Follower
R4

Raft Follower
R5

Old Config

New Config

New Configuration Phase (Step 2)
New Config (C_new): R4, R5, R6

Admin
Client

After joint configuration is established, leader
sends the “C_new” configuration information
only to the members of C_new.

Raft Follower
R6

“C_new” “C_new” “C_new”

Switching
from the
Joint to the
New
Configuration

Joint configuration protects the system from leader
crashes during the update phase.

Consensus for the C_new message is only needed
from the members of the C_new cluster.

The leader may not be a member of C_new!

After the “C_new” message is committed, members
of C_old can be shut down

The ”C_new” message can only be committed when a
majority of the C_new members have up-to-date
logs.

Continuous
Deployment
and Rolling
Back

• If you needed to rollback, you could
just bring C_old back up, form a new
joint configuration, and reverse the
process
• C_old and C_new reverse roles.

A Comment on Raft Log Snapshots and
Compaction
• Raft logs can grow very

large, increasing the time to
bring new members up to
state.
• Raft replaces older entries

with a single snapshot entry
• The snapshot entry contains

• The last included log index
• The last included term
• The system state at the

snapshot point in the log

Raft does not specify what you store in the snapshot log entry. Raft suggests using
Log Structured Merge (LSM) Trees

Byzantine Failures and Raft
What if followers don’t play by the rules? What if the leader can’t be trusted?
Slides based on “Copeland, C. and Zhong, H., 2016. Tangaroa: a byzantine fault
tolerant raft.”

Byzantine Failures
• What if a Raft cluster member

doesn’t behave like it is supposed
to?

• Corrupts or changes log files
• Calls elections all the time
• Leaks logs to third parties

• Byzantine failure sources
• Bugs in software or configurations
• Hardware and networking issues
• Malicious cluster members

• These types of problems are known
as “the Byzantine Generals
Problem” Flavius Belisarius

Problem #1: Leaky Follower Problem

What if a malicious follower joins the pool,
masquerading as a legitimate follower?

It could leak log messages to a third party

Client Raft Leader

Raft Follower

Rogue Raft Follower

• How can the system know that the rogue follower
has been injected into the cluster

Leaks

Problem #2: Disruptive Follower Problem

In Raft, any follower can attempt to become a
leader at any time

This should only be triggered by followers not
receiving heartbeat messages from the leader
within a set timeout period

Client Raft Leader

Raft Follower

Rogue Raft Follower
• A rogue follower can keep the system in a state of

perpetual election by constantly sending
“RequestVote” messages

• The system won’t handle client requests or make
commits during an election

RequestVote

Problem #3: The Bad Boss Problem
Raft leaders are solely responsible for interacting with external clients and
sending log entries to followers.

Logs are committed once the leader detects consensus

Followers trust the leader

Followers don’t know what other followers are doing

Client Rogue Raft Leader

Raft Follower

Raft Follower
• A Byzantine leader could send incorrect log entries
• Different followers may receive different values for a given

log entry
• A Byzantine leader could also send the “commit” message

before consensus has been obtained.
• A Byzantine leader may return incorrect results to a client

RAFT

“Commit A”

“Commi^^W^W^”

“Commit A”

Strategies for Byzantine
Fault Tolerance look a lot like

network security

Authentication, message integrity, nonces, etc.

Strategy #1:
Public Key
Infrastructure

• Sender uses private key to cryptographically
sign messages
• Send the signature along with the message
• Recipients use the public key to verify that

the message came from the signer
• This works as long as the private keys are

kept private
• Public keys of compromised private keys

need to be revoked

Message Signatures with Key Pairs

Digital signing can be used to authenticate
the message source and verify integrity.

Public/private keys are the standard way to
do this: TLS and mutual authentication

Public Key Infrastructure and Messaging
Signing Can Stop Impersonation Problems

Strategy #2:
Cryptographic
Hashing

A hash algorithm is a fast mathematical
function that generates a unique, hard-to-
guess numerical value from a given input

Two messages differing by a single character
generate completely different hashes.

Hashes are not reversible: given a value, you
can’t easily guess the original input

Hashes are a simple way to verify that data
hasn’t been corrupted or modified during
transmission

Strategy
#3: Election
Verification

The would-be leader must prove
to the other servers that it won
the election

It does this by sending a secure
message containing the signed,
hashed votes that it received.

A follower can verify the
signatures on the votes and the
message integrity hash

Strategy
#4: Commit
Verification

Followers broadcast their
AppendEntries response message to
the entire cluster, not just the leader

Followers can ensure that everyone
is getting the same message

Followers can confirm consensus

Strategy
#5: Lazy
Voters

The follower doesn’t blindly trust the
RequestVote method from a candidate

Followers only vote in elections if they
believe the leader is faulty.

Example: the follower also hasn’t
received leader heartbeats

Example: the leader is detected as
being rogue

BFT Raft Challenges

• Too much security can impact performance
• Increasing the complication of standard operations like leader

election can decrease availability and have other unintended
consequences
• “Practical Byzantine Fault Tolerance” is the place to get started if you

want to learn more.
• Castro, M. and Liskov, B., 1999, February. Practical Byzantine fault tolerance.

In OSDI (Vol. 99, No. 1999, pp. 173-186).

BFT Raft
Takeaways

Hashing, signing, and encryption are
ubiquitous in distributed system security.

When choosing a Control Plane technology,
know which questions to ask about security

Security isn’t free, so know the
performance costs

Security isn’t foolproof, so think through
your risks and have a plan for emergencies

