
Microservices Review

Microservices use distributed systems concepts to build
scalable, “cloud native” applications

Monolithic
Web

Application

https://microservices.io/patterns/monolithic.html

Microservice-
Style Web

Application:
First Cut

https://microservices.io/patterns/microservices.html

You get a
combinatorial

explosion problem
as you increase the

number of
microservices

Limitations of
the Simple

REST Approach

Each service is a single point of failure:
no redundancy.

All the connections and logic are hard-
coded

Request-response may not be the right
message exchange pattern

We only have a data plane, not a
control plane

What do we do if we need to
replay messages?

Messaging
Systems Offer

an
Improvement

Last week, we looked at
RabbitMQ

You can use RabbitMQ to build a
more robust microservice system

But RabbitMQ itself is not “cloud
native”.

What does a “cloud native”
messaging system look like?

A Distributed System Case
Study: Apache Kafka

High throughput messaging for diverse consumers

Lecture Sources

• Kreps, J., Narkhede, N. and Rao, J., 2011, June. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB (pp.
1-7).
• Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M.,

Narkhede, N., Rao, J., Kreps, J. and Stein, J., 2015. Building a
replicated logging system with Apache Kafka. Proceedings of the VLDB
Endowment, 8(12), pp.1654-1655.
• https://kafka.apache.org/documentation/
• https://sookocheff.com/post/kafka/kafka-in-a-nutshell/

https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/

Why Look at
Kafka?

You can use Kafka to build
sophisticated, log-centric
distributed systems
• LinkedIn does this at a huge scale

You can examine how Kafka works
to understand how to build
distributed systems generally
• Choices, tradeoffs, strategies, design

patterns

Log-Centric Architecture

“The Log: What every software engineer should know about real-time
data's unifying abstraction”, Jay Kreps,

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

What Is a
Log?

Not the logs that capture debugging
and error messages

Logs are a record of the commands
issued to your system in a
sequential order

A log is not a queue

Logs and State Machines:
Databases

Every time you do a Create, Update, or
Delete, you change the DB state

You need to store both the data and all
the operations that got you to the
current state.

You can use this information to
completely replicate the state of the DB
on another server if you have a crash

Logs and
State

Machines:
Git

Git stores all the
commits as diffs from
the previous commit.

You can restore any
previous state of the
code base

Event Sourcing

• “Event Sourcing ensures that all changes to application state
are stored as a sequence of events. Not just can we query
these events, we can also use the event log to reconstruct
past states, and as a foundation to automatically adjust the
state to cope with retroactive changes.”
• Fowler was thinking of a monolithic applications. What

about distributed applications with distributed state?

https://martinfowler.com/eaaDev/EventSourcing.html

https://martinfowler.com/eaaDev/EventSourcing.html

RabbitMQ versus Apache Kafka

OR

LinkedIn’s
Requirements

• Volume: LinkedIn needs to push billions of
messages per day to a wide variety of
consumers
• Real-time processing applied to activity

streams
• Asynchronous processing for log analysis
• Need to support both user-facing

applications and system applications
• And they needed a way to recover a large-

scale infrastructure in cases of failures at
all scales.

https://image.slidesharecdn.com/current-141113081750-conversion-gate02/95/current-and-future-of-apache-kafka-9-638.jpg?cb=1415866728

Kafka supports many
different types of
consumers

Consequences of Use Case Requirements

• Consumers must decide when to pull the data
• Fast or slow, small or large

• This means that the messaging system needs to store a lot of data
(TBs)
• This is not what traditional message systems are designed to do.
• Kafka will need an efficient way to find the requested message

• Virtue from Necessity: support message rewind and replay
• This is not a normal operation for a queue, which removes messages after

they are delivered.
• Treat the accumulated, ordered messages as input for a state machine

Cloud-Native Messaging: Kafka Enterprise Messaging: AMQP

Brokers are stateless. Brokers are state-full.

Messages can be delivered in batches Messages are individually delivered

”At least once” delivery “Exactly once” delivery

Eventual consistency across multiple brokers Strong consistency: single broker or tightly
coupled primary/backup pair

Optimized for highly variable latency, large
message throughput

Optimized for low latency delivery of smaller
messages

The system is designed to replay messages. Replay is an add-on

Apache Kafka resembles in some ways the REST architecture (idempotency)

Let’s Look at Some Details

Apache Kafka Terminology: Topic-Based Publish-Subscribe

Component Description

Topic The label for a stream of messages of a particular type.
Kafka further divides topics into partitions.

Producer An entity that publishes to a topic by sending messages
to a broker

Broker An entity on a network that receives, stores, and routes
messages.

Consumer An entity that subscribes to one or more topics. Kafka
generalizes this to Consumer Groups

What’s an example of a topic in your projects?

Kafka Brokers

Connecting message producers to consumers

Kafka Uses Clusters of Brokers

• Kafka is run as a cluster of brokers on one or more servers.

Producers and consumers use Zookeeper to know which broker to contact

Distributed Brokers

• Kafka brokers are distributed
• Topics are broken into

multiple partitions
• Partitions are allocated

across brokers

Topics and Partitions

Topics are broken up into partitions that span multiple
brokers

Kafka Topic Partitions Are Replicated

If a leader for a partition replica fails, a follower becomes the new leader

Sequential, Deterministic Lookups

• Random access is slow
• Partitions consist of one or more

segment files
• Each message stored in a

segment file has a local ID that is
determined by the size of all the
messages that come before.
• An index stores the message ID

of the first message in a segment
• Similar approaches are used by

other systems, like Delta Lake

Aside: Write-Ahead Logging

• Write-Ahead Logging: this is a technique of writing your file first and
then having your broker read the file.
• Why? If the broker needs to be restarted, it reads it log to recover its state.
• The way a broker works in recovery mode is the same as the way it works

ordinarily.

• Kafka uses the file system
• Linux file systems already have many sophisticated features for balancing in-

memory versus on-disk files

• Write-ahead logging is an important technique for lots of distributed
systems

Kafka
Producers

Producers publish data to the topics of their choice.

The producer is responsible for choosing which
record to assign to which partition within the topic.

This can be done in a round-robin fashion

Producers write to the partition’s leader.

The broker acting as lead for that partition
replicates it to other brokers

A producer writes to Partition 1 of a topic. Broker 2 is the leader. It writes replicas to Brokers 1
and 3

Consumer Groups

Kafka Consumer Groups

Consumer groups contain one or
more consumers of a given topic.

Many consumer groups can
subscribe to the same topic.

Only one member of a consumer
group consumes the messages on a
given partition

Avoid locking and other
complicated state
management issues

A consumer group is whatever is
useful for a given consuming
application

You can use consumer groups
to implement work queues

Consumers and Consumer Groups

• In a consumer group, each
member is associated with a
specific partition.
• Collectively, a consumer

group receives all messages
on a topic.
• If the group expands or

contracts, it can rebalance
using Kafka’s built-in
Zookeeper

Rewinding and Replaying Messages
• Kafka persistently stores messages much longer than conventional

messaging systems
• Doesn’t assume low-latency delivery.

• The state of a topic is the message order, stored in partition files.
• A consumer can request the same messages many times if it needs

to.
• Why? Rollback. A consumer may have had a bug, so fix the bug and consume

the message again with the corrected code.
• Recall Blue-Green deployments

• Or the consumer may have crashed before processing the message
• Rewinding is much more straightforward in a pull-based architecture.

Is Kafka a Good Choice for You?

Think about your
requirements for routing
messages to replicated
services.

Can you map your
system to topics and
partitions?

Do you need a log-
centric system?

You can still build
microservices using RPC or
REST style systems

But you’ll need to
expose the control
plane more directly

Next Time:
Message

ordering and
leader election

across brokers in
detail

Kafka and Zookeeper
Managing brokers, consumers, and producers

Zookeeper
Registry

Description Node Type

Broker Registry Contains brokers’ host names, ports, topics, and
partitions. Used by the brokers to coordinate
themselves. Ex: deal with a broker failure.

EPHEMERAL

Consumer
Registry

Contains the consumer groups and their
constituent consumers.

EPHEMERAL

Ownership
Registry

Contains the ID of the consumer of a particular
consumer group that is reading all the messages.
This is the “owner”.

EPHEMERAL

Offset Registry Stores the last consumed message in a partition
for a particular consumer group.

PERSISTENT

Each consumer places a watch on the broker registry and the consumer
registry and will be notified if anything changes.

Delivery Guarantees

• Kafka chooses “at least once” delivery.
• It is up to the consuming application to know what to do with duplicates
• Duplicates are rare, occur when an “owning” consumer crashes and is

replaced
• Two-phase commits are the classic way to ensure “exactly once” delivery.

• Messages from a specific partition are guaranteed to come in order.
• Kafka stores a CRC (a hash) for each message in the log to check for

I/O errors

What About the Message Payload?

• Apache Kafka supports clients in multiple programming languages.
• This means that the message must be serialized in a programming

language-neutral format.
• You can make your own with JSON or XML
• Kafka also supports Apache Avro, which is a schema-based binary

serialization format.
• Compare Avro with Apache Thrift and Protobuf

• Efficient message formats are essential for high throughput systems

Kafka, Airavata, and
Microservices
Some thought exercises

API Server

Application
Manager

Metadata
ServerApplication

ManagerApplication
ManagerApplication

ManagerApplication
ManagerApplication

Manager

Metadata
ServerMetadata

ServerMetadata
ServerMetadata

ServerMetadata
Server

API Server
API Server

API Server

API Server

Application
Manager

Metadata
Server

Three
microservices,

replicated

Some General Distributed
Systems Principals
Kafka, logs, and REST

Log-Centric Architecture

• Distributed servers use a replicated log to maintain a consistent state
• The log records system states as sequential messages.
• New servers can be added to expand the system or replace

malfunctioning servers by reading the log
• No in-memory state needs to be preserved

• The server just needs to know that it has an uncorrupted (not
necessarily latest) version of the log.
• You can use this approach for both highly consistent and highly

available systems (CAP)

Kafka is a log-oriented system that can be used to build other log-oriented systems

This just leaves one little
problem...
How do you keep the log replicas up to date?

Primary-Backup Replication Quorum-Based Replication

1 leader has the master copy and followers
have backups

1 leader has the master copy and followers
have backups

On WRITE, the master awaits the appending
to all backup for acknowledging the client

On WRITE, the master waits on only a
majority of the followers to confirm backups
before it returns

Supports strong consistency for distributed
READS, but doesn’t scale easily and has
lower throughput

Supports eventual consistency and higher
throughput; doesn’t require good
networking between leader and followers

If the master is lost, restore from a backup If a master is lost, elect a new leader from
the replicas that have the latest data

F+1 replicas can tolerate F failures 2F+1 replicas can tolerate F failures

Kafka State Management

• Kafka brokers are stateless
• They don’t track which messages a client has consumed or not.
• This is the client’s job
• Brokers simply send whatever the client requests
• Compare to REST

• Brokers eventually must delete data
• How does a broker know if all consumers have retrieved data?
• It doesn’t. Kafka has a Service Level Agreement:

• “Delete all data older than N days” for example

