
Napkin
Drawing
Advice: It’s
NOT an
architecture
diagram

Why would someone use what
you are building?

What does the system do? Use
verbs. “Find” is much better than
“Search”

Who is the system for? Show
how users interact with your
system

Open-Source Software:
Governance and Technologies

Examples using Git and
GitHub

From
Previous
Lecture:
Build on
Foundations

Network Messaging, Messaging Patterns,
Protocols

Algorithms

Design Patterns

Engineering Practices

Tools

Drill Down:
Engineering
Practices

Open-source practices:
GitHub to Governance

Developing telescoping applications

Deploying at scale: continuous
integration and deployment

Operating at scale

Open-Source Practices

Shared Project
Repositories
Are More
Important
than Your
Personal
Repository

Show that you can contribute to
other people’s projects

Or show that you can create and
manage a project that other people
contribute to.

Your own branch of a code isn’t
impressive. Contributing back to
the main branch of a project is
what matters.

Name some open-
source projects

Open Source
Is Not Just
Having Code
on GitHub

• Open-source software depends
on communities of developers
• Communities need governance

(rules) for how they operate

Apache
Software
Foundation
Governance
Examples

• Project members form the Project
Management Committee (PMC)
•Major project decisions are made

through votes by the PMC
• Votes take place through emails:

a persistent audit trail
•Most votes are on public mailing

lists.
• Voting periods are typically

several days

Some Do’s of
Open-Source
Audit Trails

Do you work well with other developers?

Do you effectively and articulately make your case
when discussing issues?

Do you make good pull requests and commits?

Do you handle criticisms well?

Do you effectively critique other developers?

What is Git?

Git is a collaborative, distributed version
control system.
• Everyone has their own branch of the code in a local

repository.
• Each branch has a unique ID
• You can work entirely separately and never give back....

If you want to work collaboratively, you must
combine (merge) branches.
• GitHub provides tools for collaborative coding

Teams need a strategy for how to merge their
branches.
• Communities choose and follow rules (conventions) on

how they use tools: Governance

Some Useful Conventions
and Principles

Foundations for the Apache Way

See http://nvie.com/posts/a-successful-git-branching-model/

1000 Words about Previous Picture
Branch Description
Master All other branches trace back to here. Final releases are here. Must

always build and pass all tests.
Develop Code for next version of Master. Integration Branch. Everyone’s code

goes back here. Must always build and pass all tests.
Feature Working branches with code not ready for integration. May have 1 or

more developers. Goes away when merged back into Develop.
Release Code that is preparing to go back to the Master. Only bug fixes.
Hotfix Code that fixes a bug discovered in Master that must be fixed

immediately. Merged back to both Master and Develop branches.

Only the Master and Develop branches live forever!

Applying This
for Your
Assignments
(1/3)

Note Git is not well set-up
for microservices
•Ideally you need multiple

repositories (each project has
its own GitHub organization)

•Since we don’t have this, you
need to choose a convention
and stick with it

•And document it on your
project’s Wiki.

Applying This
for Your
Assignments
(2/3)

Use team-wide Develop branches
for each project microservice
• This is tied to the CI/CD system that you

use

Each team member can have their
own “Feature” branches.
• Make pull requests to merge with the

Develop branch.
• Another team member handles the merge
• Communicate any issues using GitHub

Issues.

Apply This to
Your
Assignments
(3/3)

Use named Release branches for
submitting assignments.
• ”Project Milestone 1”, “Project Milestone 2”
• This is tied to the CI/CD system that you

use.
• This is what you submit for grading

Keep Develop and Release
branches separate!

Create new branch for Project
Milestone N+1

A Side Note
on the
Apache Way

The above procedure is just one possible
convention.
• It works well with continuous integration while allowing

feature development.
• But it could be a lot of overhead for a small team.

Apache projects decide their own branch and
merge strategy.
• Decisions are made on the developer discussion list.
• Public votes if necessary
• Conclusions are public

What if this convention doesn’t work for the
project?
• That gets discussed on the mailing list as well, in public and

on the record.
• Public votes are cast if necessary.

GitHub

What Is
GitHub?

A public repository for open-source
projects that are managed with Git.

Tools for helping you manage your code
and your community.

And more https://guides.github.com/

GitHub also integrates
with JIRA and other
online tools

Connect a git
commit to a JIRA
issue.

https://guides.github.com/

Using GitHub
Issues

See https://guides.github.com/features/issues/
for a full guide.
• See ”Milestones, Labels, and Assignees”

Use this feature to discuss your project.

Use code commit comments to tie commits to
issues.
• Include the issue number (#xxx) in your commit

message.
• See also https://help.github.com/articles/closing-issues-

via-commit-messages/

GitHub issues provide an audit trail for your
work.

https://guides.github.com/features/issues/
https://help.github.com/articles/closing-issues-via-commit-messages/

Using GitHub
Issues for
Assignments

All work must be described
using issues.

Each commit is associated with
one issue.

But...

I did all this work on my branch,
and it didn’t get merged, and
someone else on the team did
what I was supposed to do, and...

But...

I know it doesn’t look like I did
much, but really, I was contributing
to all the discussions, and I helped
write the code, but all the commits
came from my teammates, and...

You Must
Have an Audit
Trail

Your assignments must work
for the graders

Each team member needs to be
able to point to their specific
contributions

Pull Requests

Notifies others of changes to a common
branch, initiate reviews

If you want to contribute to a code branch
that you don’t have write access to, use a
pull request.

In Apache projects, submitting pull requests
(or patches) is the way to establish yourself
with the project community.

Submit enough accepted patches or pull
requests and you will be voted into the
project.

Using Pull
Requests for
Assignments

Each team member has her/his own “feature”
branch

Use Pull Requests to merge with Develop

Feature branches must be
merged back to the
Develop branch by another
team member.

Use GitHub’s Code
Review tool to
review

All communications about merging take place
using GitHub Issues

Code Release
Process

Choose a Release Manager. Discuss using Issues

The Release Manager creates the Project Milestone N
branches from Develop branches.

Everyone votes on the
release.

+1 for working, -1 for not
working

Fix bugs directly in the
release branch

Release Manager
manages these pull
requests

Release Manager also merges the Release branches
back to the Develop branches

Using GitHub
Wikis for
Documentation

Good code documents itself, but…

https://guides.github.com/features/wikis/

Each project milestone must have a Wiki entry that
includes all instructions on how to build and test
the assignment.

Your grader will only look at the wiki when setting
up and testing your submissions

https://guides.github.com/features/wikis/

Some “Apache Way” Lessons

• Community over code.
• Discuss issues publically in an archived, citable manner.
• Volunteer by assigning yourself to public issues.
• Cite the issue(s) associated with each commit.
• Review pull requests for code bases you can’t write to
• Call votes on important decisions

