Microservices and
Messaging

Communications in distributed applications

Preview of Upcoming Lectures

Basics of Messaging in
Microservices

RAFT: Building Fault
Tolerant Microservice
Systems

+ Service Meshes: Real,
Scalable Systems

o

Apache Kafka: Cloud
Native Messaging

SWIM: Building
Scalable Microservice
Systems

Control Plane
Technologies: Consul
and Zookeeper

Blockchain: Towards
Unlimited Scaling

Network Messaging, Messaging
Patterns, Protocols

F rO m t h e Algorithms
Intro Lecture:
B U I ‘ d O ﬂ Design Patterns

Foundations

Engineering Practices

Tools

Three(+)-Tiered
Architecture: this is
a “north-south”

Browser

monolithic full stack
application.

Web Interface Server

Client SDK for API

HTTP or TCP/IP

Server SDK for API

Application Server

Resource Plugins

Analytics
Engines

Database 1 Data Store

Let’s decouple
this into
microservices

Basic Components of the Application Server
Become Microservices

Server SDK to API

APl Server
Application Server
Resource Plugins
Account Inventory

Communications between the microservices on the left are over-the-wire and need to be

non-blocking in many cases.

. API S
Replicate the

|

Microservices

API Server

Multiple Microservices Are Needed to Complete a Process

e Database Per Service Pattern
Ed B * Distributed Transactions
7 e Service
e NOTE: | think we can do better
than this diagram. It doesn’t
‘rrﬂgsr‘
AMt Inventory 08
3 o Service

scale.

f—um)
* Web
| . Storefront
. T WebApp
Shipping
D8

https://microservices.io/patterns/microservices.html

How Can We Make This Robust?

REST API|
Am TEWA

Mobile app

@ o Storefront
WebApp

Browser

Inventory
Service

Account
D8
Inventory
D8

Shipping
D8

Services need to be replicated for

load balancing and fault tolerance

Services need to be discoverable

We need a way to connect
endpoints

We need to detect service crashes

Anything else?

How Can We Make This
Work?

Answer: Messaging and Coordination

Microservices communicate with other
microservices via messaging over networks.

Microservices need a way to find each other
dynamically: no hard-coded connections.

Microservices need to communicate with
defined message formats or data models

At Internet

Scale

Services have IP addresses and domain
names

Domain Name Servers match services’
domain names to IP addresses

Browsers and servers communicate over
HTTP with HTML messages

Humans decide where to go

REST generalizes this for machine-to-
machine communications

HTTP Summary

(2) Browser sends a request message

(1) User issues URL from a browser GET URL HTTP/1.1
http://host:port/path/file Host: host:port

(4) Server returns a response message

'ﬁ—r
:,? : HTTP/1.1 200 OK
(5) Browser formats the response <
anddisplays @ =2 @ l=====t-oooooooe :

Client (Browser) HTTP (Over TCP/IP)

G%DU 0 el]

|

(3) Server maps the URLto a
file or program under the

document directory.

Server (@ host:port)

REST generalizes this for machine-to-machine communication

That’s How
the Internet

Works

We need to scale this down
to specific, coordinating
distributed applications.

Humans aren’t around to
make all the decisions

What Are Some
Problems Using HTTP for
Microservices?

Some Answers

* HTTP is point-to-point
* Sender and receiver are tightly coupled
* How do you send messages to more than one recipient?

* Request-response
* Block until you get a response
* How do you push a message back later?

* Messages (HTML) are designed for human, not machine consumption

* Hypermedia As The Engine Of Application State (HATEOAS), Swagger attempt
to address this for REST

HTTP is not designed for more complicated messaging scenarios

The Microservice Situation

Microservice 1

Ul Server APl Gateway
Microservice 2

Some questions:

* Dol have at least one replica of Microservice 1 running?

* Is Replica 2 of Microservice 1 up and running?

* Replica 1 for Microservice #2 just came up and needs to find
configuration information. How can it do that? Microservice 3

* Microservice 3 uses Master-Worker, and the Master just failed.
How should we handle this?

Two Approaches

Service Mesh Approach: Go with REST or RPC for communication but
+ introduce a control plane information system and sidecar proxies to
coordinate different end points.

'- Message Oriented Middleware Approach: Use a message broker to route
messages AND manage information about endpoints.

Messaging in Distributed
Systems

We'll use Advanced Message Queuing Protocol (AMQP) and RabbitMQ
overviews as examples

This is not an endorsement of these for the assignments!

A Simple Microservice Collection

API Server

Microservice #2

Microservice #1

How do these services communicate?

Point to Point Communication Is Brittle

Microservice #1

API Server

Combinatorial problems when you have > 3
services

How do you manage load balancing and
service instance discovery?

How do you rewire communications when you
need to add more service instances?

What if multiple services need to receive the
same message?

Microservice #2

Messaging Systems Solve Many of These
Problems

API Server

Message
Broker

Microservice #1 Microservice #2

Brokers Also Work Well with Service
Replication

API Server

Message
Broker

Microservice #1 Microservice #2

Scale Out: Simple Work Queue

MSG 1, 2,3,4,5

API Server

VYVYVY
0
@
D

ACK

MSG 1

ACK

* 5 Job requests come to the API Server

e API Server publishes to Broker

* Broker sends messages to workers in round-robin fashion

* Workers send ACKs when done

* |If Broker detects a closed connection before an ACK, sends
MSG to a different worker

MSG 2

ACK

MSG 3

Inventory Worker A

Inventory Worker B

Inventory Worker C

* They are queues for messages....

* You can put lots of messages in a queue,
which the message broker will deliver with

Value of various qualities of service
* In order

M essage * Exactly once

QUEUing * At most once

SySte ms e At least once

* Many-to-many rather than just one-to-one
* Can support both push and pull messaging
* A bit like email for machines

* Messaging systems remove the need for
microservices to know too much about each other

 Services just need to know how to connect to

Value of the message broker.

* The network locations and specific instances of
M essage the services can change over time.
SySte m S, * Messages can be synchronous or asynchronous
CO Ntinu ed * Possibly better performing than HTTP:

* RabbitMQ can multiplex multiple channels of
communication over a single TCP/IP connection

* Apache Kafka can support high throughput

Message Exchange Patterns

See the RabbitMQ tutorial for more examples

Point to Point Communication

hello

Publisher (P) sends a message to the broker, which puts it in queue
The broker routes to the appropriate Consumer (C) using routing keys
Messages are pushed to the consumer

The publisher doesn’t explicitly know how to connect to the consumer.

* The broker handles this

Work Queue

 Multiple consumers listen to the same queue

* Each message is delivered to only one consumer

* The broker can use round robin or other scheduling strategies for routing messages to
individual consumers

* You can program/configure consumers to ACK messages and block until they are finished
processing a message

* |f a consumer crashes, the broker can resend a message

* Consumers can join or leave the pool dynamically

Remote Procedure Calls with Messaging

rpc_queue

A

Request
reply to=amgp.genXaz...

correlation_id=abc
@?\ reply to=amq.gen-Xaz2...
Reply
correlation_id=abc

* We can make more sophisticated Work Queues by adding a second queue
(callback or reply) to the broker.

* This allows the server to send back complicated replies to the client or to
another recipient

* Not just ACKs to the broker
* Now both end points act as both publishers and consumers.

Client

server

Publish/Subscribe

amg.gen-RQ6...

amg. gen-As8...

Publisher sends a message to multiple queues (same broker) via an
Exchange (X)

Consumers attach to different queues

This allows multiple types of consumers to receive the same message
Important Variation: Topic-Based Pub/Sub

When should you use this?

Some Applications

Simple
Microservice
Work Queue

with
RabbitMQ

- If a Consumer closes before it send the ACK,
Te the broker resends the message to a new
consumetr.

Let’s Replicate the Account Manager

Account

API Server

Message
Broker

Inventory

Simple Work Queue

MSG 1, 2,3,4,5

API Server

VYVYVY
0
@
D

ACK

MSG 1

ACK

* 5 Job requests come to the API Server

e API Server publishes to Broker

* Broker sends messages to workers in round-robin fashion

* Workers send ACKs when done

* |If Broker detects a closed connection before an ACK, sends
MSG to a different worker

MSG 2

ACK

MSG 3

Inventory Worker A

Inventory Worker B

Inventory Worker C

What About the Next Step in the
Transaction?

API Server

Message
Broker

Account Inventory

Coordinating Transactions: Some Choices

You can hard-code it all in the API server

If using a message broker, you can use an RPC pattern to signal to the next
service

You can use a transaction manager as a separate service

You can define your process flows in a workflow language that is used by the
APl Server or Transaction Manager

Coordinating Transactions: Some
Microservice Patterns for Further Reading

SAGA

Event Sourcing

Command Query Responsibility Segregation (CQRS)

Message systems route communications

between distributed entities.

e You don’t need to know the physical addresses of the
recipients

Messaging systems support multiple
messaging patterns out of the box.

Summary

e You don’t have to implement them.

Queues are a powerful concept within

distributed systems.

e Entities can save messages in order and deliver/accept
them at a desirable rate.

e Queues are a “primitive” (foundational) concept that
you can use to build more sophisticated systems.

You have many choices

e RabbitMQ, Kafka, NATS, Apache Pulsar, ZeroMQ...

e This is a team issue: consider options, make a
choice, and go with it.

Which
Messaging

AMOQP messaging system implementations

are not cloud-native

Software to
Choose?

e They must be configured as highly available
services.

e Primary + failover

e No fancy leader elections, etc as used in Zookeeper
+ Zab or Apache Kafka

e Have scaling limitations, although these may not
matter at our scales.

Topic Exchange

* Message Queues bind
using routing patterns
instead of routing keys.

* A Publisher sends a
message with a routing
key.

e Exchange will route to all
Message Queues that
match the routing key’s
pattern

Topic Exchange
Messages: routing key = routing key = routing key = routing key =
usa.newsw usa.weather| europe.news europe.weatheJ

Broker -

Exchange:

Bindings:

binding key = binding key/= binding key = binding key =

usa.# #.news i #.weather | europe.#

Basic Concepts

Server
+—-——_—_—_————r e — —
| Virtual Dhost
| e +
| | Exchange |
e + | | e + |
] Publisher | ==seecueaa > | |
| application | | | R |
e o | |
| | Message |
| | Queue |
e + | | e + |
| Consumer P e — + |
| application | | | e + |
e + | | e + |
| e +

An AMQP Server (or Broker)

e Accepts producer messages

EXC h adn ge e Sends to 0 or more Message Queues using routing

keys

M essa ge e Routes messages to different consumers
depending on arbitrary criteria
e Buffers messages when consumers are not able to
Qu e u e accept them fast enough.

Producers and Consumers

* Producers only interact with Exchanges
* Consumers interact with Message Queues

* Consumers aren’t passive
* Can create and destroy message queues

* The same application can act as both a publisher and a consumer
* You can implement Request-Response with AMQP
* Except the publisher doesn’t block

* Ex: your application may want an ACK or NACK when it publishes
* This is a reply queue

The Exchange

* Receives messages
* Inspects a message header, body, and properties
* Routes messages to appropriate message queues

* Routing usually done with routing keys in the message payload

* For point-to-point messages, the routing key is the name of the message
queue

* For pub-sub routing, the routing key is the name of the topic
* Topics can be hierarchical

Message Queue Properties and Examples

* Basic queue properties:
* Private or shared
* Durable or temporary
* Client-named or server- named, etc.

 Combine these to make all kinds of queues, such as

* Store-and-forward queue: holds messages and distributes these between
consumers on a round-robin basis.

e Durable and shared between multiple consumers.

* Private reply queue: holds messages and forwards these to a single
consumetr.

* Reply queues are typically temporary, server-named, and private to one consumer.

* Private subscription queue: holds messages collected from various
"subscribed" sources, and forwards these to a single consumer.

* Temporary, server-named, and private

Consumers and Message Queues

« AMQP Consumers can create their own queues and bind them to
Exchanges

e Queues can have more than one attached consumer
* AMQP queues are FIFO

« AMQP allows only one consumer per queue to receive the message.
e Use round-robin delivery if > 1 attached consumer.

* If you need > 1 consumer to receive a message, you can give each
consumer their own queue.
* Each Queue can attach to the same Exchange, or you can use topic matching.

Publish-Subscribe Patterns

e Useful for many-to-many messaging

* In microservice-based systems, several different types of components
may want to receive the same message

e But take different actions
e Ex: you can always add a logger service

* You can always do this with explicitly named routing keys.

* You may also want to use hierarchical (name space) key names and
pattern matching.
» gateway.jobs.jobtype.gromacs
e gateway.jobs.jobtype.*

The Message Payload

* Read the specification for more details.
* In general AMQP follows the header-body format
* The message body payload is binary

* AMQP assumes the body content is handled by consumers
* The message body is opaque to the AMQP server.

* You could serialize your content with JSON or Thrift and deserialize it
to directly send objects.

Direct Exchange

routing key =
KEY

Direct Exchange

Broker

* A publisher sends a message Exchange:
to an exchange with a specific —
routing key.

Queues:

* The exchange routes this to
the message queue bound to
the routing key.

* A consumer receives the
messages if listening to the
queue.

e Default: round-robin queuing
to deliver to multiple
subscribers of same queue

Queue.Declare queue=app.svc01l
Basic.Consume queue=app.svcll
Basic.Publish routing-
key=app.svc01l

Fanout Exchange

* Message Queue binds to an
Exchange with no argument

e Publisher sends a message
to the Exchange

* The Exchange sends the
message to the Message
Queue

* All consumers listening to
all Message Queues
associated with an
Exchange get the message

Fanout Exchange

Broker
Exchange:
Bindings:

Queues:

Message j

\A \A

\A

Topic Exchange

* Message Queues bind
using routing patterns
instead of routing keys.

* A Publisher sends a
message with a routing
key.

e Exchange will route to all
Message Queues that
match the routing key’s
pattern

Topic Exchange
Messages: routing key = routing key = routing key = routing key =
usa.newsw usa.weather| europe.news europe.weatheJ

Broker -

Exchange:

Bindings:

binding key = binding key/= binding key = binding key =

usa.# #.news i #.weather | europe.#

More Examples

Ra b b |t M Q e Has several nice examples of classic message

exchange patterns.

Tu tO r| a I e https://www.rabbitmg.com/getstarted.html|

Wh at It e Many publishers

e Absolute and partial event ordering are hard
problems

O m ItS e Broker failure and recovery

https://www.rabbitmq.com/getstarted.html

Work Queue, Take Two

Orchestrator pushes work into a queue.

Have workers request work when they are not busy.
* RabbitMQ supports this as “prefetchCount”
e Use round-robin but don’t send work to busy workers with outstanding ACKs.
* Workers do not receive work requests when they are busy.
* Messages wait in queue...

Worker sends ACK after successfully submitting the job to an external resource.
* This only means the job has been submitted
* Worker can take more work

A Monitor application handles the state changes on the supercomputer

”n . n

* Publishes "queued”, “executing”, “completed” or “failed” messages
When job is done, Orchestrator creates a “cleanup” job

* Any worker available can take this.

Work Queue, Take 2

Orchestrator

Experiment Metadata

Manager

0. RunJob

7. Cleanup

1a. Ready

4. 6.,10. Job Status

2. Runlob

5. Done

9. ACK

1b. Ready

8. CleanUp

AppMan Worker

Job Monitor

AVelol\ViE: OrKe

