
Security Considerations for
Science Gateways

Applications of OAuth2 and OpenID Connect

https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

Three Major
Divisions of a
Science
Gateway
Architecture:
Three Security
Issues

• Domain specific: SEAGrid.org,
SimVascular, etc

• Maintain their own user bases

Science
gateway
tenants

• Provides general purpose services that
are used by gateway tenants.

• One middleware instance can support
multiple science gateway tenants and
multiple resources

Science
gateway

middleware

• A gateway provider “rents” space on a
resource

• Could be a supercomputer, Google
Drive, AWS, etc

Science
gateway

resources

Three Levels of
Security
Considerations

Security Between Tenants and
Middleware

Security within Middleware
(Byzantine Faults)

Security Between Middleware
and Resource Layer: Direct and
Brokered

Custos:
Services that
Provide Three

Types of
Security

Authenticate users and manage their
profiles.

Manage the “secrets” needed to access
remote resources

Manage access to session metadata
created and managed by the gateway

Simplifying Assumption: the Middleware Perimeter

• Assume all the microservices run under a single administrative domain.
• Can use “operational security” rather than “architectural security”

• Firewalls, closed networks and similar approaches to limit access to services to trusted entities.
• Logging and intrusion detection

• Service Mesh solutions use TLS and mutual authentication within the perimeter

Some interesting further Microservice
security considerations:

• Rogue services, Byzantine Fault
Tolerance: RAFT

• Inter-Service Mesh Security
• Integrating trusted third party

services like Box.

Let’s Look at the Tenant-Middleware Security

Gateway
Tenant

Gateway
Tenant

Gateway
Tenant

Apache Airavata Middleware

API Server

Zoom in on the User Interface and API Servers

• UI: this is the gateway tenant
• The API Server can communicate

with multiple tenants.
• Tenants can be Web servers,

mobile applications, native
browser JavaScript apps, or
desktop applications.
• Tenants and the API server

communicate over network
connections (TCP or HTTPS)

Security Challenges for Gateway Tenants

• Establishing trust between a gateway tenant and the API
server.
• The gateway tenant may manage its own user base, but

these must be communicated to the API server.
• A gateway tenant may be a single web server for an entire

community (server-side PHP, Python, Java, etc)
• A gateway tenant also may be a desktop application,

scripting tool, or in-browser application that get distributed
to every user.

OAuth2 can address many of these issues.

Network Security and
OAuth2

A basic introduction

Entities on a Network

Entity 1 Entity 2
Network Communications

(TCP/IP)

Security
Concept 1:
Entities

Entities have unique identities

Entities can prove their identity:
authentication

Entities can limit access of other
entities based on identity:
authorization

Security Concept 2: Messages

Entities can verify that
messages came from a
specific authenticated
entity. Implemented
with public/private keys

Detecting if the network
message between
entities has been altered.
Implemented with
message digests
(hashes).

Communications
between entities can
only be read by those
entities. Implemented
with encryption, shared
secret keys

Each message between
entities is unique. Avoids
accidental or malicious
replays. Uses nonces,
timestamps, etc.

The Authorization Problem

Client

Resource
Service

Resource
Owner

The Resource Owner wants to
authorize the Client to act on
Resource Service on the Resource
Owner’s behalf. How do you do
delegate this authority?

Trust Boundary

Authorization and 3rd Party Services

• This is a pervasive problem
• Platforms (Facebook, Google) and devices (phones) hold your

personal data (resources).
• Third party applications need to access some of this data.
• You decide which applications to authorize
• “Facebook, it is ok for this application to access the names of my Facebook

friends and other personal information.”
• “IPhone, it is OK for this app to know my location”

I am the Resource Owner. My list of friends, personal information, and location are
accessible through a Resource Service. Facebook and IPhone apps are Clients.

Problems Delegating Authority

• Straightforward Approach:
Client requests an access-
restricted resource by
authenticating using the
resource owner's
credentials, like passwords
• The Resource Owner shares

its credentials with the third
party Client.
• The Client impersonates the

Resource Owner.
• This is a really bad solution
• What are some problems

with this approach?

Client

Resource
Service

Resource
Owner

Some
Problems
with
Credential
Sharing

Third-party applications gain full, permanent access to
the Resource Owner's protected resources.

Resource Owners cannot revoke access to specific
clients without revoking access to all clients (must
change passwords)

Compromise of the client results in compromise of
the end-user's long-term credentials and all the data
protected by that password.

Compromise of one client compromises all the clients
and all the Resource Services.

Introducing OAuth2

Client Resource
Service

Resource
Owner

AuthZ
Service

OAuth2 solves this
problem by
introducing a
mutually trusted*
Authorization
Service

*There are rigorous
ways, like key
exchanges, for
establishing mutual
trust.

OAuth2 Main Concepts

• Introduces an authorization layer
• Separates the role of the client from that of the resource owner.
• Client is issued a different set of credentials (OAuth2 access tokens) than those of

the resource owner (passwords)
• An OAuth2 access token has a specific scope, lifetime, and other access attributes.
• These limit what the Client can do and how long the Client’s requests are valid

• Access tokens are issued to third-party clients by an Authorization Server with the
approval of the Resource Owner.
• The Client uses the access token to access the protected resources hosted by the

Resource Server.

Credentials vs. Tokens

Resource Owner Credentials
• Can be used by the client to do

anything the user can do
• Don’t expire
• Resource Owner must manually

change them
• All Clients use the same

credentials for a specific
Resource Owner

Access Tokens
• Can be associated with specific,

limited operations
• Read but not write, for example

• Have a specific lifetime
• Generated by the Authorization

Server, not a human
• Each Client has a different token

Types of OAuth2 Clients

Client Type Description

Web Application Confidential client that runs on a Web server. Client
credentials and access tokens are stored on a Web server.

Native Applications Public client that runs on a device used by the Resource
Owner. Client credentials and access tokens are stored on the
device. Examples: mobile devices and desktop clients

User Agent
Applications

Public client code is downloaded from a server and runs on
the user’s Web browser. Client credentials and access tokens
are stored in the user’s browser.

These clients have different security implications

Client Registration: Trusting the Client

• Clients register with the Authorization Server
• This is a one-time operation.

• The Client can be either confidential or public
• Confidential: a web server-based Client, for example
• Public: Browser, desktop, or mobile clients

• The Authorization Server issues a client identifier to the Client
• Unique string representing the information provided by the client.

• Confidential Clients authenticate to the Authorization Server
• Passwords, key pairs, secrets, etc.

OAuth2’s Abstract Protocol Flow

OAuth2 In Brief...

• The Resource Owner issues a grant to the client.
• The grant usually comes from the Authorization Service

• The Client uses the grant to get an access token from Authorization
Service.
• The Client uses the access token to make requests from the Resource

Service until the access token expires.

OAuth2 has several grant types that are appropriate for different
scenarios.

Authorization Code Grant Type for Private Clients

• The Client is a server-side
application

• The Resource Owner
attempts to use the Client to
access a Resource Server
(not shown in figure)

• When complete, the Client
can use the Access Token to
access the Resource Server.

This is the most common grant type.

Resource Owner is a person, and User-
Agent is a Web browser.

Implicit Grant Type for Public Clients

• Authorization flow suitable for
Clients that run as JavaScript
applications in the user’s
browser.
• Client gets the access token

directly in a redirect URL,
skipping the authorization
code step.
• Convenient but less secure.

Resource Owner Password Credentials
• Resource Owner gives the Client its full credentials.
• Client uses these to obtain an access token and possibly refresh tokens.
• Owner must trust the Client, and Client can use the credentials only once per

access token.
• Best way to authorize desktop applications?

Client Credentials Grant Type

• Client and Resource Server are owned by the same entity, or Client and
Resource Owner are the same.
• Ex: Facebook’s internal services only access your personal data if you

authorize them.
• Machine-to-machine, no human in the loop
• You could use this between microservices within your perimeter

What Are Access Tokens?

• These may be identifiers (“kdjk-111-dkjfkljd-0kdkj-kwjlej”) meaningful only to the
Resource Server
• Or they may be structured and meaningful

• JSON Web Tokens
• OpenID Connect Tokens (shown)
• SAML

• The Client may not understand or even decrypt the token

Refresh
Tokens

Access tokens should expire in order to
limit their potential misuse.

Refresh tokens are used to obtain new
access tokens after the access token has
expired.

Issued to the Client by the Authorization
Server when the Access Token is issued.

Refresh tokens are optional

OpenID Connect: A Summary

An OAuth2-Based Authentication Protocol

http://openid.net/connect/

What Is OpenID
Connect?

• Authentication as a Service
• Don’t run your own

authentication service
• Use a trusted service

instead
• Authentication

mechanisms and details
handled by the service.

Why Use
OpenID
Connect?

• Trusted Identity Providers (IdPs) absorb
lots of headaches
• Follow best practices and

implementations for securing user
accounts and information.
• Avoid the need to provide separate

identity management for every
application
• Handle federated identities.
• Handle advanced authentication

mechanisms such as two-factor
authentication

Examples

CAS: not OpenID Connect based, but
similar

CILogon: a service from University of
Illinois that provides federated identity

Keycloak: Open source software for
running your own IdP.

Google, Microsoft, Amazon, Auth0, and
others run OpenID Connect services for
you.

OAuth2 and OpenID Connect

OAuth2 is used to authorize clients to access resources using
access tokens.

OpenID Connect uses the same ideas to authenticate users
before they can access services.

Clients can also obtain basic profile information about the
user in an interoperable and REST-like manner.

User + Browser Web Application
in Server

Direct Authentication

User DB

HTTPS + Basic Auth

Authentication as a Service

User + Browser

Web Application
in Server

IdP

(3) IdP confirms authentication

(2) User Authenticates

(1) Web App
Redirects User to
the IdP

Basic OIDC Flow

Relying Party. This is
the OAuth2 Client.

OpenID Connect
Provider (i.e.,
Google)

Basic OIDC Steps

• The Relying Party (RP) sends a request to the OpenID Provider (OP).
• This is the science gateway

• The OP authenticates the End-User and obtains authorization.
• The OP responds with an ID Token and usually an Access Token.
• Verifies to the client that the user authenticated correctly.
• The ID Token is specific to OIDC and is its primary extension of OAuth2

• The RP can send a request with the Access Token to the UserInfo
Endpoint.
• The UserInfo Endpoint returns Claims about the End-User.

We can make use of the Access Tokens for other authorization decisions.

OAuth2, OIDC, and Science Gateways

• We treat science gateway tenants as OAuth2 clients
• Tenants thus need to authenticate users and obtain OAuth2 access tokens.
• Tenants present access tokens to the API server for basic access levels.
• Finer grained decisions can be made using access control mechanisms,

groups, etc.
• Custos represents our current implementation, originating in 2014-2015

GSOC projects

Nakandala, S., Gunasinghe, H., Marru, S. and Pierce, M., 2016, October. Apache Airavata security manager:
Authentication and authorization implementations for a multi-tenant escience framework. In 2016 IEEE 12th
International Conference on e-Science (e-Science) (pp. 287-292). IEEE.

