
Summary of
Part 1

Use logs to record changes to your system.

Centralized logs make it easy for the system
have a universal, consistent, replayable
record of how it evolved over time

Services that manage the central logs need
to be correct, reliable, recoverable, and fault
tolerant

The Raft algorithm is a popular way to
provide these guarantees

Part 2: Raft in Detail

A Simple Raft Scenario

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1 ConsumerPublisher

• A publisher appends entries to the Raft-based log server
• Each log entry contains commands, data, etc
• The log server stores the entries in order that they are received
• A consumer reads entries from the server

Raft-Based Log Server

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1 ConsumerPublisher

For redundancy, we
can replicate the RAFT-
based log server.

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1

Leader

Follower

Follower

The publisher and
consumer only
interact with the
leader.

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1 ConsumerPublisher

Raft allows a
minority of
followers to lag.

Log
Entry 1

Log
Entry 3

Log
Entry 2

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1

Leader

Follower

Follower

An entry is
considered “safe” if
a majority of Raft
servers have a copy

Why would Raft
allow this?

Why Allow
Followers
to Lag?

You can have more servers in the
Raft cluster

Having more servers in the Raft
cluster makes it more fault
tolerant.

Publishers don’t have to wait for
the log to be replicated on all
followers, just most of them.

ConsumerPublisher

If the leader crashes,
one of the followers
can become the new
leader.

Log
Entry 1

Log
Entry 3

Log
Entry 2

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1

Failed Leader

New Leader

Follower
Each time a leader
changes is called a
term.

The new leader must
have all of the “safe”
log entries.

If the older leader is
restarted, it can rejoin
the pool as a follower.

This is called “consensus”

A RAFT Log Looks Like This

• Log entry = index, command, term
• Logs are stored on stable storage (disk).
• If the server crashes, re-read the log from disk

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

term

command

index

Let’s see what this looks like for five servers

● Log entry = index, term, command
● Log stored on stable storage (disk); survives crashes
● Entry committed if known to be stored on majority of servers

§ Durable, will eventually be executed by state machines
March 3, 2013 Raft Consensus Algorithm Slide 11

Log Structure Snapshot

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

March 3, 2013 Raft Consensus Algorithm Slide 12

Log Structure Snapshot+1

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

3
sub

1
ret

3
div

Leaders and
Leadership

Changes

• There is at most one leader at any time
• A system needs a new leader if the leader fails or

becomes disconnected from a majority of
followers: heartbeat failures
• New leaders are chosen by election from among

the followers
• Followers become candidates if they detect

that a leader has failed
• Only one candidate can win

• A term is the time period that a particular leader
is in charge

Follower Candidate Leader

start
timeout,
start election

receive votes from
majority of servers

timeout,
new election

discover server with
higher term

“step
down”

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Raft Server States:

Raft Time Evolution:

Key Raft Properties

• Election Safety: At most, only one leader can be elected
• Leader Append-Only: Leaders can only append entries to the logs.

They never change committed (safe) entries.
• Log Matching: if two logs have the same index and same term, then

the logs are identical in all entries up to that index
• Leader Completeness: If a log entry is committed in a given term,

then the entry will appear in the logs of leaders of future terms
• State Machine Safety: if a server has committed an entry, no server

will ever overwrite this entry

Desirable qualities, but how do we implement it?

Logs and Committed (Safe) Logs

• Servers can have log entries that are volatile
• Log entries are only committed after a majority of servers have

accepted the log message.
• Committed logs are guaranteed
• External clients only get acknowledgements about committed log

entries

RAFT Has Only
Two API
Methods:
AddEntries
and
RequestVote

AppendEntries: Leader sends this to
each follower

RequestVote: a candidate sends this to
the rest of the cluster

Both methods use term and log entry
indices.

Based on the term and log index, the
recipient either applies or rejects the
request.

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

Only Entries 1-7 are committed when this
snapshot was taken.

1 2 3 4 5 6 7 8

Writer Reader

Sending Entry 8,
waiting for

confirmation from
the leader.

Can only read
Entries 1-7.

Run an Election

March 3, 2013 Raft Consensus Algorithm Slide 19

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

Old leader

log index

Followers: who becomes
new leader?

committed entries

term

command

Raft Election Process
(1/4)

• Leaders send heartbeat
messages periodically
• If a follower doesn’t

receive a heartbeat
during an “election
timeout” period, it
changes to a candidate.

Raft Election
Process (2/4)
The candidate
increments its
term value and
votes for itself

Raft Election Process (3/4)

• Candidate sends its term and index to all
the other servers in a RequestVote message
• The recipient server is either in “follower”

state or “candidate” state
• They compare term and index values of last

logs
• Highest wins
• A server only votes at most once per term

Candidate 1

Follower 2

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

The RequestVote
command can
come from either
candidates.

Candidate 1 will
get Follower 2’s
vote.

RequestVote

4
VOT 1

1 2 3 4 5 6 7 8

1 2 3 4 5

9

Follower 1

Candidate 2

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

The RequestVote
command can
come from either
candidates.

Follower 1 will not
vote for Candidate
2.

RequestVote

1 2 3 4 5 6 7 8

1 2 3 4 5
4

VOT 2

6

Raft Election Process
(4/4)

• When a candidate receives votes
from a majority of servers, it

wins the election and becomes
the new leader

• It establishes this by sending an
”I Won!” log message to the

clulster with its term.

● Candidates C2 and C4 can win the election with 3 votes
§ Candidates C1 and C3 will vote for either
§ Candidate C4 can win if gets votes from C1 and C3 before contacting Candidate 2

● Note a split election is possible: Follower 1 votes for Candidate 2, and Follower 3
votes for Candidate 4, for example

● Log entry 8 was not committed, but that’s ok: the client (not shown) hasn’t
received an acknowledgement

Election

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

Old leader (defunct)

log index

Candidates 1, 2, 3, 4

committed entries

C1

C2

C3

C4

Split Elections

• If no candidate receives a majority of
votes, the election fails and must be held
again.
• Raft uses random election timeouts.
• If a leader hasn’t been elected within the

election time out, a candidate increments
its term and starts a new election.
• Each server has a different time out,

chosen at random.
• This randomness is key for the system to

find a new leader quickly

● For a leader to decide an
entry is committed:
§ Must be stored on a majority

of servers
§ At least one new entry from

leader’s term must also be
stored on majority of
servers

● Once entry 4 committed:
§ s5 cannot be elected leader

for term 5
§ Entries (2,3) and (4,4) both

safe

March 3, 2013 Raft Consensus Algorithm Slide 29

Log Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader for
term 4

4

4

Combination of election rules and commitment rules makes Raft safe

3

Leader changes can result in log inconsistencies:

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

New Leader

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

Uncommitted
entries: N

March 3, 2013 Raft Consensus Algorithm

● New leader must make follower logs consistent with its own
§ Fill in missing entries
§ Delete extraneous entries (these weren’t committed)

● Leader keeps nextIndex for each follower:
§ Index of next log entry to send to that follower
§ Initialized to (1 + leader’s last index)

● When AppendEntries consistency check fails, decrement
nextIndex and try again:

Repairing Follower Logs

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

leader

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

Slide 31

● When follower overwrites inconsistent entry, it deletes all subsequent
entries:

March 3, 2013 Raft Consensus Algorithm Slide 32

Repairing Logs, cont’d

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11log index

leader for term 7

1 1 1follower (before) 2 2 33 3 3 32

nextIndex

1 1 1follower (after) 4

● Deposed leader may not be dead:
§ Temporarily disconnected from network
§ Other servers elect a new leader
§ Old leader becomes reconnected, attempts to commit log entries

● Terms used to detect stale leaders (and candidates)
§ Every RPC contains term of sender
§ If sender’s term is older (smaller), RPC is rejected, sender reverts to follower and

updates its term
§ If receiver’s term is older (smaller), it reverts to follower, updates its term, then processes

RPC normally

● An election updates the terms of majority of servers, by definition
§ Deposed server cannot commit new log entries

March 3, 2013 Raft Consensus Algorithm Slide 33

Neutralizing Old Leaders

● Send commands to leader
§ If the client doesn’t know the leader, contact any server in the cluster
§ If contacted server is not the leader, it will redirect to the leader

● Even for READS
● Client guaranteed to get latest committed log state

● Leader does not send the response to the client until the command has
been logged, committed, and executed by leader’s state machine

● If request times out (e.g., leader crash):
§ Client reissues command to some other server
§ Eventually redirected to new leader
§ Retry request with new leader

March 3, 2013 Raft Consensus Algorithm Slide 34

Client Protocol

Some Previews of
Upcoming Lectures

Changing a
Raft Cluster

Imagine if you need to grow or shrink
the Raft cluster

Or update the Raft server versions

Or move to new host servers

Can you do this without taking the
system down?

Raft and
Configuration

Changes
(Brief)

• Raft clusters can update themselves
while continuously operating.
• They do this by requiring joint

consensus between the old and new
collections.
• This is an interesting approach for

handling Continuous Deployment
scenarios.

Some Limits of
Raft (1/3)

All READ requests also
go to the leader

The followers are
just there as
backups

When the Raft leader is stable, Raft
provides strong consistency to its clients

But this can limit throughput

Zookeeper has weaker consistency but is
more scalable for READs

Some Limits of
Raft (2/3)

• Raft may not scale across geographically
distant data centers or cloud regions
• Consul supplements Raft with another

protocol called SWIM
• The problem: network communication

speed and network unreliability will make
the system unwieldy
• Blockchain is a similar logging protocol

that works at larger scales

Some Limits of
Raft (3/3)

• Raft members communicate with
each other using RPC calls.
•What if a malicious or faulty server is

in the cluster?
• It could tamper with logs
• It could inappropriately share logs
• It could disrupt the system by

calling elections
• These are called Byzantine failures

Client Raft Leader

Raft Follower

Raft Follower
RAFT Recap: Clients are external applications that
send READ and WRITE requests. The client only
interacts with the leader to read and write log
entries. The followers write log entries sent by the
leader. A follower can become a new leader.

RAFT

What You
Should Really
Remember
About Raft

Raft is a consensus algorithm for
maintaining consistent state in
distributed systems

It is the basis for Control Plane
(information) services

Don’t try to invent something like this
yourself. It is tricky.

It works best within a single data center
with low latencies.

