
BitCoin, Blockchain, and Peer-to-Peer 
Ledgers

Some ideas in how to scale up log management



A Thought Exercise

• You are the architect for a new distributed system for a national scale 
retail corporation.
• It is a requirement that you have a “fog” architecture,
• Some servers are deployed on- or near-premises at the retail locations
• Other services are deployed on a commercial cloud vendor



How Would You Build This System?

• What are the challenges for building this type of system?
• What are the advantages and disadvantages of the following?
• RabbitMQ-based messaging for edge-to-cloud communication
• Kafka-based log systems for edge-to-cloud communication
• Wide area Kubernetes deployments
• Service meshes for edge-to-cloud communication



BitCoin, Blockchain, and Peer-to-Peer 
Ledgers

Some ideas in how to scale up log management



Process State

• A stateful process has time 
varying properties.
• Process state is the snapshot of 

the system at a given point in 
time.
• We usually think of these state 

changes as discrete.
• Example: CREATE, UPDATE, and 

DELETE operations on a data 
base change the state of the 
database.



Logging State Changes

• A state change is the non-
zero difference between 
State(t_m) and State(t_n) 
where n>m.
•We frequently need to 

record state changes in logs 
or ledgers.



Distributed 
System State

A system is a collection of 
cooperating processes

The state of the system is the 
state of its constituent 
processes



RAFT

Has a strong leader 

Provides fault tolerant and consistent log 
management with limited scaling

Can coordinate process states in a system 
that needs consensus consistency.

Example: transaction logs in a database



SWIM

• Peer-to-peer
• Eventually consistent
• Good for tracking state changes that don’t need an audit trail.
• Ex: group membership changes (maybe)

1

2

3

4

6

5

8

7
1

2

3

4

6

5

8

7

9

T1 T2



Can We...

A state management approach 
that scales like SWIM, but...

Can create consistent audit trail 
logs like RAFT?



Maybe...

Image by Bitboy - Bitcoin forums, Public Domain, https://commons.wikimedia.org/w/index.php?curid=15411063

https://bitcoin.org/en/bitcoin-paper



Bitcoin 
Overview

Bitcoin uses keys and hashes to create a 
globally scalable monetary system.

In other words, it is a peer-to-peer 
transaction system.

It therefore must both scale and be 
consistent.

How?

Start with security basics



Public Key 
Infrastructure 
(PKI)

• Private Keys: Cryptographically sign 
messages
• Send the signature along with the message

• Recipients use the public key to verify 
that the message came from the signer



PKI 
Limitations

PKI works as long as the private 
keys are kept private

Public keys of compromised 
private keys need to be revoked

This is another well known 
distributed systems problem



Marlons-MacBook-Pro:~ marpierc$ more junk_keyfile
-----BEGIN OPENSSH PRIVATE KEY-----

b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAABFwAAAAdzc2gtcn
NhAAAAAwEAAQAAAQEAr+9uzr5hyuHx+IBN+XwhVGqcRPTBMgz9hioMu+f53WFqP3EuTGZv
uEW1XAV5Nm2Acvr0DVXlD7rqz6emcmCwoOTEesX7IAJAAWlKWhmneqdLSQ5ZY7LSlk3oes
sM+LW5VVIUCs1oZSd/attsd3HqFoflpZHImcg9qOIIQy/GTAhGX1J9OaVfep2KQxYEkOTV
QXxFMdQO6yEcyRQC8R2HuamioEevrXsOXKLwQdSgdYRHhEmMsu0Tpmd6Kw5K8ID/NE07im
L4j8u4hw9XkqA9o3YAEkiTWBN2IDclJPOqpsS2mU2gwJyJ1PCIKslHTUiW5Eb8ElGsD7Oc
81awBqCJiQAAA+DZHP9l2Rz/ZQAAAAdzc2gtcnNhAAABAQCv727OvmHK4fH4gE35fCFUap
xE9MEyDP2GKgy75/ndYWo/cS5MZm+4RbVcBXk2bYBy+vQNVeUPuurPp6ZyYLCg5MR6xfsg
AkABaUpaGad6p0tJDlljstKWTeh6ywz4tblVUhQKzWhlJ39q22x3ceoWh+WlkciZyD2o4g
hDL8ZMCEZfUn05pV96nYpDFgSQ5NVBfEUx1A7rIRzJFALxHYe5qaKgR6+tew5covBB1KB1
hEeESYyy7ROmZ3orDkrwgP80TTuKYviPy7iHD1eSoD2jdgASSJNYE3YgNyUk86qmxLaZTa
DAnInU8IgqyUdNSJbkRvwSUawPs5zzVrAGoImJAAAAAwEAAQAAAQEArRImuS7D2OdIN6NQ
EXsw9nAh5hu36dqpk8/N0xOy0zq/YEWgu/uRL38zl6Cyyv4RfAqvBmdW/JBt6XUM4juHxd
8GAZi9H5HXEQxY3iWagagNAYMiIFeLndxqNFGHIyrxdKNXoADND6U5TQ8ptp7THvL00FmH
MvCu53HjmuRmd+eSddZ0Lviuy0nr+wV2obePAbs6dN6p17RGzJATAtaevC3rNzlZk6AdTp
+VpCkgiR5CxBEQeFPAvzG7fMoexAUIB2MMPVIil8QC9kvIpofiHKUwgOUeIDUuR305L3kO
X7W5vgV/9zLUeHgYm+aBeLsvYgnJcm4f2yUgJhx2eIAAAQAAAIEApL2RLGksFYPwWyP9Bb
L4O17/ezxCUvl9YSa+0fCs6VbTpeP3cTBbqWcusv1rIzmSNaJ92mzJ4s5vIQ8WzBOlIxIj
35BN3XfT5FNX+FjEYnMAu9joUZXyzfcLYpLRsJqRO+P6Fpqsk1IsoelmQOvwvbsxOpX7j+
DPY8S6U8YFcTUAAACBANU0h4NxEQr3lGTMr4KVSViggXr+33hd/UT1VPQJajUG1LRzoaE6
FV8KJAwJ3yKe1i8fwyp2H3IyO4bmv6mxB0AB4SUpmY5MhFvI4m2wzCDrAY1xEBNamZfjPx
5fqGfRT61+lxZ3yhnpXi3EwVPBB+gUlxeUfd1Pfpyq7pK7mzABAAAAgQDTP82Mef45s2vp
dZm7on44CAu6i6znVy8L+g+7Qnu3lBpRuAPSFxOQbyNEbNLa6gHG9yEFn8N8IdCH6L28WC
rERSDnr/7e8T0jcUPosIxfWV83ERzNo3vT6UwcOfC+D9H2m/Nz8RZO3qX5BIja8Ium32gu
ZVpSl/BXFJnHhOPZiQAAACJtYXJwaWVyY0BNYXJsb25zLU1hY0Jvb2stUHJvLmxvY2FsAQ

IDBAUGBw==
-----END OPENSSH PRIVATE KEY-----

SSH Private Key Example



Marlons-MacBook-Pro:~ marpierc$ more junk_keyfile.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCv727OvmHK4fH4gE35fCFUapxE9MEyDP2GKgy75/ndYWo/cS5MZm+4Rb
VcBXk2bYBy+vQNVeUPuurPp6ZyYLCg5MR6xfsgAkABaUpaGad6p0tJDlljstKWTeh6ywz4tblVUhQKzWhlJ39q
22x3ceoWh+WlkciZyD2o4ghDL8ZMCEZfUn05pV96nYpDFgSQ5NVBfEUx1A7rIRzJFALxHYe5qaKgR6+tew5cov
BB1KB1hEeESYyy7ROmZ3orDkrwgP80TTuKYviPy7iHD1eSoD2jdgASSJNYE3YgNyUk86qmxLaZTaDAnInU8Igq
yUdNSJbkRvwSUawPs5zzVrAGoImJ marpierc@Marlons-MacBook-Pro.local

SSH Public Key Example



OpenSSL Command Line Tools

• Create key pairs
• openssl req -nodes -x509 -sha256 -newkey rsa:4096 -keyout ”meps.key" -out 

”meps.crt" -days 365 -subj 
"/C=US/ST=Indiana/L=Bloomington/O=IU/OU=PTI/CN=MEPs Sign Key”

• Sign files
• openssl dgst -sha256 -sign ”meps.key" -out sign.txt.sha256 sign.txt

• Verify signatures
• openssl dgst -sha256 -verify <(openssl x509 -in "meps.crt" -pubkey -noout) -

signature sign.txt.sha256 sign.txt



Cryptographic 
Hashing

• A hash algorithm is a fast 
mathematical function that 
generates a unique, hard-to-guess 
numerical value from a given input 
• Two messages differing by a single 

character generate completely 
different hashes.
• Hashes are not reversible: given a 

value, you can’t easily guess the 
original input
• Hashes are a simple way to verify 

that data hasn’t been corrupted or 
modified during transmission
• Hashing is often combined with 

signing





Bitcoin Basic 
Transactions

• Assume for the moment that 
bitcoins exist
• Marlon wants to buy a pizza 

from Suresh and pay in 1 
bitcoin.
• Marlon transfers the bitcoin to 

Suresh in exchange for the 
pizza.



Owner 1’s
Bitcoin: It’s 
just some 

blob of bits



Steps in a 
Transaction

Only Marlon (Owner 1) can spend the coin because 
his public key is embedded in the last block.

Marlon transfers the coin to Suresh (Owner 2) by 
digitally signing a hash of the previous transaction 
and Suresh’s public key

Marlon adds these to the end of the coin. 

Suresh can verify the signatures to verify the chain 
of transactions. 

Compare with BFT Raft’s logs



But Can Suresh 
Trust Marlon?

•What if Marlon also used the 
same bitcoin to pay Isuru for 
tacos at the same time?
• This is called double-

spending.



Bitcoin’s Solution, Part 1: Timestamping and 
Ledgers
• We publish transaction information broadly to public ledgers

• We include a time stamp

• The timestamp proves that the data must have existed at the time, 
obviously, in order to get into the hash. 
• Each timestamp includes the previous timestamp in its hash, forming a 

chain, with each additional timestamp reinforcing the ones before it. 



But What If Marlon Sends Two Transactions 
with the Same Time Stamp?
• We need a way, independent 

of Marlon’s assertions, to 
order the transactions and 
prune out extraneous ones.
• If we have multiple ledgers,

we can’t rely on real time 
stamps for ordering.
• We need a way to logically 

order ledger entries. 
• Different ledgers must have

the same ordering.

Ledger 1 Ledger 2

Marlon

Pizza Tacos



Bitcoin’s Solution, Part 2: Proof of Work

X-Hashcash: 1:52:380119:calvin@comics.net:::9B760005E92F0DAE

0000000000000756af69e2ffbdb930261873cd71



A 1 CPU, 1 Vote 
Meritocracy

You can vary the computing requirements 
by changing the required number of 0’s in 
the hash.

Email clients can do this in a second on 
average

Bitcoin’s required 00000...000 prefix is set 
to take about 10 minutes on average.

Bitcoin proof-of-work is done by the 
ledgers in the network



Steps in a 
Bitcoin 
Network

New transactions are 
broadcast to all ledger 

nodes. 

Each node collects 
new transactions into 

a block. 

Each node works on 
finding a difficult 

proof-of-work for its 
block. 

When a node finds a 
proof-of-work, it 

broadcasts the block 
to all nodes. 

Nodes accept the 
block only if all 

transactions in it are 
valid and not already 

spent. 

Nodes express their 
acceptance of the 

block by working on 
creating the next 
block in the chain



Trust the 
Longest Chain 

Nodes always consider the longest chain to be the 
correct one and will keep working on extending it. 

If two nodes broadcast different versions of the next 
block simultaneously, some nodes may receive one or 
the other first. 

In that case, they work on the first one they received, 
but save the other branch in case it becomes longer. 

The tie will be broken when the next proof-of-work is 
found and one branch becomes longer; 

The nodes that were working on the other branch will 
then switch to the longer one. 



Global Crime 
Fighting

Variation in computing time for the 
proof of work foils Marlon’s attempt at 
double-spending.

But it also works globally: as chains 
grow longer, the proof-of-work burden 
to subvert a chain becomes very large

As long as most participants are 
honest, dishonest network nodes will 
fall quickly (exponentially) behind.



Bitcoin, 
Blockchain, 
and Scalable 
Registries 

Bitcoin shows a way to have scalable, 
peer-to-peer transaction ledgers 
(blockchains) that can also be kept 
eventually consistent.

Bitcoin assumes competing interests 
and uses incentives to encourage 
honesty: emergent system properties

Is there a case for blockchain registries 
in Service Meshes and Microservices?


