
SWIM: Scalable Weakly-consistent 
Infection-style Process Group 

Membership Protocol 
Das, A., Gupta, I. and Motivala, A., 2002, June. Swim: Scalable weakly-

consistent infection-style process group membership protocol. In 
Proceedings International Conference on Dependable Systems and 

Networks (pp. 303-312). IEEE.

https://courses.engr.illinois.edu/cs425/fa2019/L6.FA19.pptx



Control Planes and Microservices

Control planes are the information systems for your distributed 
collection of microservices.

They help microservices find each other

They track system state

These are the bases for higher level operations



RAFT Recap

RAFT and similar systems are used to 
manage ordered logs.

Logs capture the state of a distributed 
system and so must be handled carefully 

RAFT is fault-tolerant and strongly 
consistent

Consensus model for managing 
distributed state logs



Control Plane: RAFT Cluster

F F

L

Client

Client

Client

Client

Client

Client

Client

Client

Client

Client



RAFT Scaling 
Limitations for 
Clients

Relies on a 
strong leader
• The leader is a 

bottleneck

Uses 
heartbeats to 
detect failures
• Heartbeats don’t 

scale

Can operate 
effectively with 
3-15 members

Not a good 
protocol for 

some simpler 
operations in 
distributed 

system.



Consul, RAFT, 
and 

SWIM/Gossip

https://www.consul.io/docs/internals/architecture.html



Scaling to 
Data Center 
Size and 
Beyond

There are simpler services needed by 
distributed systems than logs.

But these need to scale to 1000s, 10,000s, 
100,000s or more processes. 

Even better, can you design a system that 
will scale indefinitely?

Example: how do you detect server failures 
if you are running a modern cloud center?



Two Key 
Operations 
for 
Distributed 
Systems Fault Detection: Failed processes are 

detected by the other members and 
communicated throughout the system.

Membership: Each process knows all 
the other members

Faulty members need to be 
removed from each member’s list



SWIM Insight Compared to Prior Systems

Membership changes and fault detection are separate processes

Monitoring needs to go on all the time, but membership changes 
because of faults occur at a longer time scale. 

Therefore, SWIM has two basic operations: Fault Detection and 
Dissemination 



Problems with 
All-to-All 
Heartbeats

Each member of a cluster sends 
and receives small heartbeat 
messages with all other members

If M_x doesn’t receive a 
heartbeat from M_y within a 
timeout, it marks M_y as faulty

This works for smaller systems 

But it grows quadratically (like 
N^2) with the size of the cluster



Properties of 
Failure 
Detection 
Protocols

Strong completeness: crash failures 
are detected by all non-faulty 
members

Speed of detection: the time interval 
between a failure and its first 
detection

Accuracy: the rate of false positives

Network Message Load required 



You Can’t Have It All

• Failure detection in an asynchronous network cannot 
be simultaneously 100% accurate and strongly 
complete

• So, you need to make a choice
• Strong completeness is the usual choice over 100% 

accuracy
• So, we need a way to minimize false positives

• That is, incorrectly marking a process as failed 
when it has not



SWIM 
Failure 
Detection, 
Step 1

SWIM cluster members only 
monitor a subset of the other 
members. 

You have two parameters: T_p
(protocol time) and K (# of members 
to monitor)

Every T_p seconds, each member 
sends out a PING to K other 
members of the cluster.

If M_x receive the ACK from M_y
within a timeout period, all is well.

No need to update memberships. 



Swim Failure 
Detection, 
Step 2 

If M_x doesn’t hear from M_y before the 
timeout, it asks for help

M_x sends a PING-REQ(M_y) message to K 
other members of the cluster

The other members PING(M_y) and return 
their results to M_x

If M_y responds to any of these pings, and if M_x
gets this message back from a member of K, all is 
well.

Again, no unnecessary membership 
updates



SWIM Failure 
Detection, 
Step 3

If M_x cannot confirm that M_y 
is alive even after Step 2, then 
it needs to tell the rest of M 
that it has detected a failure.

This is the Dissemination part 
of the protocol



Dissemination and the Gossip Protocol

• Let Q_f be the number of non-faulty members of the cluster with N 
members
• The likelihood that a member is pinged by some other member in the 

protocol time step is 1 – exp (-Q_f) in the limit of large N. 
• In other words, very likely unless the system is very faulty

• The time required for detecting a failure is T_p / (1-exp(-Q_f))
• In other words, pick T based on a good guess for your average Q_f

• A more complicated expression helps you pick K to put a bound on 
false positives
• Depends on Q_f and the probability of UDP packet delivery



SWIM: Strong Completeness Satisfied

• A faulty member will eventually be PINGed, detected as faulty, and 
removed.
• Message load per member of the cluster is constant
• Compare all-to-all, where members must respond to ~N^2 pings for 

an N-member system
• None of the properties of SWIM’s failure detection protocol depend 

on the cluster size.
• That scales!



SWIM Protocol Primitives Summary

• PING: sent by one member to another randomly chosen member
• PING-REQ (M_y): sent by a member to a subset of other members if it 

thinks M_y is faulty
• The other members will now PING M_y

• ACK: the response to a PING



Dissemination

Telling the rest of the cluster about membership changes



Disseminating 
Failures

This part of the protocol 
needs to propagate 
efficiently to the entire 
system.

We’ll assume failures are 
relatively rare compared to 
the protocol time T for 
PINGs



Infection-Style Dissemination

• M_x includes information about failed members in all of its 
communications with other members
• Hey, M_z, PING, and by the way, M_y has failed
• Hey, group, PING-REQ(M_a), and, by the way, M_y has failed
• Hey, M_z, I’m alive, here’s your ACK, and by the way, M_y has failed.

• Anyone receiving this message from M_x will remove M_y from its 
group list



Dissemination Performance Summary

• (Analysis deleted)
• Let LAMBDA be a parameter. 
• After t=LAMBDA*log(N) rounds of the protocol, only N^[(-2)(LAMDA 

-1)] members have not heard about the failure
• Note that this goes quickly to zero, even for large N, thanks to the 

log()



Reducing False 
Positives with 
Suspicions

A healthy cluster member may fail 
the PING test because of 
temporary network issues or its 
own load.

• Note 1: this is likely in VMs since real 
hardware is shared by many VMs

• Note 2: sidecars can help with load issues

SWIM uses a “Suspicion” 
subprotocol to reduce these.



Propagating 
Suspicion 

If M_y fails M_x’s PING and PING-REQ 
tests, M_x marks it as “suspicious” 
rather than “failed”.

M_x propagates the message “M_x 
suspects M_y” to the rest of the cluster

M_z marks M_y as suspicious when it 
receives the message

Suspicious M_y is still treated as alive by 
the cluster



Suspicion, 
Continued

If M_z later successfully pings M_y, it 
moves it back to its “alive” list

M_z then propagates the message “M_z 
knows M_y is alive” to the rest of the 
cluster

Other processes remove M_y from their 
suspicious list when they receive this 
message.

M_y can also disseminate this message



Suspicion, Continued

Suspected entries are marked as failed if they haven’t responded 
within a time out.

If M_x expires M_y, it will propagate the message 

Since M_y can be suspected and unsuspected several times, its 
“suspected” status is associated with an ”incarnation number”, 
monotonically increasing index



SWIM Scaling 
Properties

Imposes a constant message load per group member 
regardless of the cluster size

At least one working member detects failures within a 
constant time.

Provides a deterministic bound on the time it takes for 
any non-faulty process to learn about a faulty process

Latency for learning about failures increases 
logarithmically (slowly) with cluster size (good thing)

Reduces false positives (PING-REQ and Suspicion 
mechanisms) without performance penalties



Final Thoughts

• In practice, the Suspicion mechanism can still lead to too many fault 
positives under certain circumstances
• Slow networks
• Overloaded processes can be slow to respond
• Denial of service attacks can make servers unresponsive

• SWIM may also not work well if there are too many faulty members 
• Having healthy processes frequently getting kicked on and rejoining 

the system can hurt performance
• Consul uses a modified SWIM with extensions called Lifeguard to 

address this.
Dadgar, Armon, James Phillips, and Jon Currey. "Lifeguard: Local health awareness for more accurate failure detection." In 2018 48th Annual 

IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 22-25. IEEE, 2018.


