
Team Garuda
CSCI-B-649
Spring 2022

Optimization using Object-Store
Architecture Analysis Case Study

We think that the scientist using this tool to understand weather patterns will need to compare
multiple plots of different variables, date and time to make some observations. To make this
possible we need to retrieve multiple data points quickly.

Previous implementation stored the Nexrad dataset in MongoDB and when a user requests to
plot the data, the fetch API retrieves it from MongoDB and plots it on the map on the web app.

Following were the downside of the previous implementation:
● We were restricted to reducing the time range in the request as MongoDB had a 16MB

limit for a document.
● The backend had a lot of load as it had to transfer in the worst-case scenario 16MB of

data for 1 request to the web app. 16MB for one request is a huge number.
● In the case of multiple concurrent requests it would lead to unavailability of resources or

high response time for the user.
Solution

● To overcome the problem mentioned above we introduced Object Store. Now, the
system stores the Nexrad dataset downloaded for a request to the object-store rather
than in MongoDB.

● For object-store, we are using an S3 compatible API from Jetstream. Now, we are only
storing the S3 bucket object’s URL in MongoDB, and on request from the user to plot the
map we retrieve and return the S3 bucket URL.

● Then, on the web app, render the data directly from the object store and plot it(The same
flow as in the previous version).

● The good thing about this decision is that we didn’t have to do any major architectural
changes.

Advantages/Improvements on architecture
● Reduced load on the backend which in turn leads to more availability and low response

time for the user
● We can increase the NEXRAD/MERRA2 data time range in the request, ie. large data

set in one request.
● Later on, we can use CDNs layers to cache objects in Jetstream object store

Analysis
In order to analyze the approach we made 100 concurrent requests with the same parameters
to the architecture with and without the object-store feature.

The results were far better than we expected.

Requests result without the object-store

No. of requests Average time(ms) Minimum time(ms) Maximum time(ms)

100 14194.34 2082 22946

1



Team Garuda
CSCI-B-649
Spring 2022

Requests result with the object-store

No. of requests Average time(ms) Minimum time(ms) Maximum time(ms)

100 399.63 141 566

The average time was reduced by around 135%

As you see from the graphs below the response time varies from 2000 ms to 22000 ms without
the object-store feature (Ref. Fig 1.1) and in this case, with the object-store feature, the
response time varies from 100ms to 600ms (Ref. Fig 1.2).

Fig 1.1 - Response time distribution without object-store

Fig 1.2 - Response time distribution with object-store

2



Team Garuda
CSCI-B-649
Spring 2022

In the case without the object-store feature, the response time of all the requests is more than
1500ms (Ref. Fig 2.1) whereas with the object-store feature around 70% of the requests
response time is less than 500ms (Ref. Fig 2.2).

Fig 2.1 - Response time overview without object-store

Fig 2.2 - Response time overview with object-store

3



Team Garuda
CSCI-B-649
Spring 2022

Disadvantages of the Object store solution
● Processing of data becomes difficult after upload. If processing is required, the object

needs to be downloaded on the server, processed and uploaded again.
● Management of objects in object stores. Need to set access layers and view policies.

As the data is available publicly we didn’t have to worry about data access layers and
authorisation and since, the advantages outweigh the disadvantages we decided to move
forward with integrating object store to our architecture.

For a detailed report please follow the path mentioned below on the github repository:
./tests/load_test/object-store_optimization

4


