
Continuous Integration/Deployment
February 1st 2022
Suresh Marru



Software Engineering Best Practice 
Checklist
1. We have our code in a version control system that meets our needs.
2. We associate all commits with issues.
3. We have at least two main branches for all of our code: develop and release.
4. We have code reviews for all code committed to our main branches.
5. We have a build system that we regularly execute.
6. Our build system includes unit tests.
7. We fix broken builds, including test failures as well as compilation failures.
8. We use code analysis tools to help find problems such as DRY code, code that is never 

used, code that is too complex, inadequate unit test coverage, etc.
9. We remove obsolete code.
10. Our integration and deployment scripts are in our code base.



Continuous Integration

Continuous integration is a development practice that requires developers to integrate code into a shared repository on 
a daily basis.

Integrating regularly in production-like environments makes it easier to 
quickly detect and locate conflicts and errors. 

Each check-in is validated by
• An automated build
• Automated unit, integration and 

acceptance tests



Continuous Delivery (1)

Continuous delivery is a methodology that focuses on making sure software is always in a releasable state throughout 
its lifecycle.

• Extends continuous integration 
• Provides fact, automated feedback on the production-

readiness of systems
• Prioritizes keeping software deployable over working on 

new features
• Enables push-button deployments on demand
• Reduces deployment risks and enables quicker user 

feedback

Integrating regularly in production-like environments makes it easier to 
quickly detect and locate conflicts and errors. 



Continuous Delivery (2)

Stop the line when tests failc

Feedback – test results, monitoring data, etc.

Dev Test Staging Prod

Commit
Code

Build and
Test

Acceptance
Test

Deploy to
Prod and Test Release

Automated
Trigger

Manual
Trigger

Deployment is the installation of a specified version of software to a given 
environment (e.g., promoting a new build into production). 

Automated tests in production-like environments assure the code and
environment operation as designed and are always in a deployable state.



Continuous Integration Continuous Delivery

Req Plan Code Build Test Release Deploy Manage Monitor



Robots and Virtual Machines Will Save 
You



Continuous Integration Practices
• Have a defined build process
• Automate the build
• Make your build self-testing
• Every commit to the “integration” branch should build on an 

integration machine
• Keep the build fast
• Test in a clone of the production environment
• Make it easy for anyone to get the latest executable
• Everyone can see what’s happening
• Automate deployment

8



No Excuses, Plus There Are Tools!
• With containers and virtual machines, we are running out of 

excuses for having irreproducible deployment environments.
• There is a substantial array of tools to help you automate your 

integration and deployment environments.
• The best ones provide “Infrastructure as Code”

9



Operations Best Practices Checklist
1. We have a continuous integration system that mimics our deployment environment
2. We have automated the creation of integration and deployment environments
3. We don’t need to log into our test and production systems to update them.
4. We have integration and system tests that we use regularly, trust and rely on.
5. Our integration and systems tests run automatically (tied to commits or else run as 

cron jobs)
6. We apply systems tests regularly to our production system.
7. We debug most or all of our production system’s problems by inspecting logs.
8. We don’t need to log into our production system’s server hosts to inspect logs.
9. We have monitoring in place to detect failed services.
10. We have documented steps for moving our services to new deployment hosts

10



A Problem Solving Machine
• Having a technical architecture for your system will guide you at 

all stages and help identify “hot spots” that need improvement
• Map your value proposition into your system.
• Choose technologies, frameworks
• Identify “hot spots” in your system: where are you spending too 

much effort? Where are you not spending enough effort?

11



Another Problem Solving Machine
• Reviewing your architecture with knowledgeable peers is a 

great way to identify problems and find solutions. 

12



Expected Outcomes
• Develop an architecture that maps you capabilities and 

implementations to your value proposition.
• Identify what you build and what you buy
• Review this with a peer group.
• Identify “hot spots” in your architecture

• Introspection, peer review
• SWOT analysis

13



14



1

2
3
4
5

5Steps

All these artifacts need to be in your project 
repository and will be peer-reviewed

St
ep

St
ep

St
ep

St
ep

St
ep

Ideation 

Architecture & Design

Test Cases

Implementation 

Validation 

Break every project milestone into:

Project Life Cycle



1

2
3
4
5

01
• Articulate your idea as a user story. 

• Describe as many variations as you can. 
• Do not yet describe how the system 

accomplishes them.
• Draw a napkin drawing of your idea.
• Articulate the value proposition (central strength of 

your project). 
St
ep

St
ep

St
ep

St
ep

St
ep

Ideation

Architecture & Design

Test Cases

Implementation

Validation

Project Idea



1

2
3
4
5

02
• Draw an architecture on how you will 

accomplish the project. 
• Do not yet discuss how you will implement 

it. 
• Identify the basic components needed. 
• Leave out the implementation details. 
• Identify the components which are your 

unique contributions (value propositions). 
St
ep

St
ep

St
ep

St
ep

St
ep

Ideation

Architecture & Design

Test Cases

Implementation

Validation

White Board Architecting



1

2
3
4
5

03
• Write usage scenarios as test cases 
• Think about programmability of the test 

cases

St
ep

St
ep

St
ep

St
ep

St
ep

Ideation

Architecture & Design

Test Cases

Implementation

Validation

Test Cases – Usage Scenarios 



1

2
3
4
5

04
• Implement the architecture in 3 different 

programming languages.
• Use a build system.
• Configure Travis-CI/CircleCI Continuous 

Integration.
• Use Ansible like tools to have a one-click 

Deployment. 
St
ep

St
ep

St
ep

St
ep

St
ep

Ideation

Architecture & Design

Test Cases

Implementation

Validation

Implement the Architecture



1

2
3
4
5

05
• Run through test cases
• Peer-reviewers will need to 

identify more testing scenarios. 
• Rinse and Repeat

St
ep

St
ep

St
ep

St
ep

St
ep

Ideation

Architecture & Design

Test Cases

Implementation

Validation

Validate the system


