
Data Serialization and Binary RPC 
January 27th 2022
Suresh Marru



Assignment 1 anti-patterns
• “If it did not happen on your GitHub repo it did not happen”.
• Software engineering project vs Architectural thinking.
• Confusion with “Session Management” Service.
• “interactive” user interface. 
• Focus on usability of application vs ease of deploy of your 

system (build from source on a laptop).



Data Retrieval Post-Processing and 
AnalysisModel Execution

Session ManagementUser Management

API Gateway: REST, 
gRPC, etc

Message 
Handling

User Interface(s): 
HTML, CSS, etc

HTTPS



Assignment Requirements
• Each of the components in the previous diagram is a microservice. 

• Each must run as a separate process.
• You must use at least 3 different programming languages 

• For example, one service in Python, one in Go, one in Java, ...
• You must use at least one DB technology

• Only one microservice can connect to each DB
• You must choose and implement an internal communication strategy for 

your microservices
• You must define your API based on this lecture and other discussions
• Prototype your continuous integration and deployment

• Your entire system must be easily deployable by your peers, graders, 
and instructors 



Task or Job State Diagram
• Do not assume your service has a 

Boolean operation. 
• Your core functional services are 

accomplishing a task.
• A task has a state transition 

<Operating Systems 101>

• Are you thinking on state diagram 
for your individual services and for 
your system as a whole?

come and go, and many end-user-facing service jobs see a
diurnal usage pattern. Borg is required to handle all these
cases equally well.

A representative Borg workload can be found in a publicly-
available month-long trace from May 2011 [80], which has
been extensively analyzed (e.g., [68] and [1, 26, 27, 57]).

Many application frameworks have been built on top of
Borg over the last few years, including our internal MapRe-
duce system [23], FlumeJava [18], Millwheel [3], and Pregel
[59]. Most of these have a controller that submits a master
job and one or more worker jobs; the first two play a similar
role to YARN’s application manager [76]. Our distributed
storage systems such as GFS [34] and its successor CFS,
Bigtable [19], and Megastore [8] all run on Borg.

For this paper, we classify higher-priority Borg jobs as
“production” (prod) ones, and the rest as “non-production”
(non-prod). Most long-running server jobs are prod; most
batch jobs are non-prod. In a representative cell, prod jobs
are allocated about 70% of the total CPU resources and rep-
resent about 60% of the total CPU usage; they are allocated
about 55% of the total memory and represent about 85% of
the total memory usage. The discrepancies between alloca-
tion and usage will prove important in §5.5.

2.2 Clusters and cells

The machines in a cell belong to a single cluster, defined by
the high-performance datacenter-scale network fabric that
connects them. A cluster lives inside a single datacenter
building, and a collection of buildings makes up a site.1
A cluster usually hosts one large cell and may have a few
smaller-scale test or special-purpose cells. We assiduously
avoid any single point of failure.

Our median cell size is about 10 k machines after exclud-
ing test cells; some are much larger. The machines in a cell
are heterogeneous in many dimensions: sizes (CPU, RAM,
disk, network), processor type, performance, and capabili-
ties such as an external IP address or flash storage. Borg iso-
lates users from most of these differences by determining
where in a cell to run tasks, allocating their resources, in-
stalling their programs and other dependencies, monitoring
their health, and restarting them if they fail.

2.3 Jobs and tasks

A Borg job’s properties include its name, owner, and the
number of tasks it has. Jobs can have constraints to force
its tasks to run on machines with particular attributes such as
processor architecture, OS version, or an external IP address.
Constraints can be hard or soft; the latter act like preferences
rather than requirements. The start of a job can be deferred
until a prior one finishes. A job runs in just one cell.

Each task maps to a set of Linux processes running in
a container on a machine [62]. The vast majority of the
Borg workload does not run inside virtual machines (VMs),

1 There are a few exceptions for each of these relationships.

because we don’t want to pay the cost of virtualization.
Also, the system was designed at a time when we had a
considerable investment in processors with no virtualization
support in hardware.

A task has properties too, such as its resource require-
ments and the task’s index within the job. Most task proper-
ties are the same across all tasks in a job, but can be over-
ridden – e.g., to provide task-specific command-line flags.
Each resource dimension (CPU cores, RAM, disk space,
disk access rate, TCP ports,2 etc.) is specified independently
at fine granularity; we don’t impose fixed-sized buckets or
slots (§5.4). Borg programs are statically linked to reduce
dependencies on their runtime environment, and structured
as packages of binaries and data files, whose installation is
orchestrated by Borg.

Users operate on jobs by issuing remote procedure calls
(RPCs) to Borg, most commonly from a command-line tool,
other Borg jobs, or our monitoring systems (§2.6). Most job
descriptions are written in the declarative configuration lan-
guage BCL. This is a variant of GCL [12], which gener-
ates protobuf files [67], extended with some Borg-specific
keywords. GCL provides lambda functions to allow calcula-
tions, and these are used by applications to adjust their con-
figurations to their environment; tens of thousands of BCL
files are over 1 k lines long, and we have accumulated tens
of millions of lines of BCL. Borg job configurations have
similarities to Aurora configuration files [6].

Figure 2 illustrates the states that jobs and tasks go
through during their lifetime.

VXEPLW���
DFFHSW

3HQGLQJ

5XQQLQJ

'HDG

XSGDWH

VFKHGXOH

XSGDWH

ILQLVK��IDLO��NLOO��ORVWVXEPLW

IDLO��NLOO��
ORVW

HYLFW

UHMHFW

Figure 2: The state diagram for both jobs and tasks. Users can
trigger submit, kill, and update transitions.

A user can change the properties of some or all of the
tasks in a running job by pushing a new job configuration
to Borg, and then instructing Borg to update the tasks to
the new specification. This acts as a lightweight, non-atomic
transaction that can easily be undone until it is closed (com-
mitted). Updates are generally done in a rolling fashion, and
a limit can be imposed on the number of task disruptions

2 Borg manages the available ports on a machine and allocates them to tasks.

Image Source: Verma et al, Large-scale cluster management at Google with Borg 



Thrift, ProtoBuff and gRPC



Reference Papers
• Verma, Abhishek, Luis Pedrosa, Madhukar Korupolu, David 

Oppenheimer, Eric Tune, and John Wilkes. "Large-scale cluster 
management at Google with Borg." In Proceedings of the Tenth 
European Conference on Computer Systems, pp. 1-17. 2015.

• https://dl.acm.org/doi/pdf/10.1145/2741948.2741964
• Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer, 

and John Wilkes. "Borg, omega, and kubernetes." Queue 14, 
no. 1 (2016): 70-93.

• https://dl.acm.org/doi/pdf/10.1145/2898442.2898444

https://dl.acm.org/doi/pdf/10.1145/2741948.2741964








Programming Language “polyglotism”
• Modern distributed applications are rarely composed of 

modules written in a single language.
• Weaving together innovations made in a range of languages is 

a core competency of successful enterprises.
• Cross language communications are a necessity, not a luxury.
• In your projects you need to demonstrate this by using three or 

more languages. 



Cross-Language Communications 

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



Other Motivations
• Large-scale distributed systems actually composed of microservices

• Allows loosely-coupled and even multilingual development
• Scalability: things, cores, devices, nodes, clusters, and data centers (DCs)

• Communication predominantly structured as RPCs
• Many models of RPC communication
• Terminology: Client uses a stub to call a method running on a 

service/server
• Easiest interfaces (synchronous, unary) resemble local procedure calls

• Translated to network activity by code generator and RPC library
• High-performance interfaces (async, streaming) look like Active Messaging

• Long way from textbook description of RPCs!



� #JUSFLR

([DPSOH�J53&�FOLHQW�VHUYHU�DUFKLWHFWXUH



Protocol Buffers
• “a language-neutral, platform-neutral, extensible way of 

serializing structured data for use in communications protocols, 
data storage, and more.”

• “Protocol buffers are a flexible, efficient, automated mechanism 
for serializing structured data – think XML, but smaller, faster, 
and simpler. ”

• https://developers.google.com/protocol-buffers/docs/overview
• Started internally within Google in 2001 and Opened in 2008.

https://developers.google.com/protocol-buffers/docs/overview


Protocol Buffers Contd. 
• IDL (Interface definition language) 

• Describe once and generate interfaces for any language. 
• Data Model 

• Structure of the request and response. 
• Wire Format 

• Binary format for network transmission. 



Apache Thrift
• Thrift is Facebook’s implementation of Proto Buff open sourced 

under Apache.
• A high performance, scalable cross language serialization and 

RPC framework.
• Provides a full RPC Implementation with generated clients, 

servers, everything but the business logic.
• Thrift is is fast and efficient, solutions for minimal parsing 

overhead and minimal size. 



Thrift for RPC Services
• User Code

• client code calls RPC methods and/or [de]serializes 
objects

• service handlers implement RPC service behavior
• Generated Code

• RPC stubs supply client side proxies and server side
processors

• type serialization code provides serialization for IDL 
defined types

• Library Code
• servers host user defined services, managing 

connections and concurrency
• protocols perform serialization
• transports move bytes from here to there

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



4 Simple Steps to Create a RPC 
microservice

1. Define the service in a language neutral 
“Interface Description Language”.

2. Compile the IDL to generate Server and 
Client “stubs” in desired programming 
languages.

3. Plug the server implementation in the pre-
generated server stub.

4. Call the remote services as if they are 
making local method calls.

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



Thrift: Multiple Communication Schemes
• Streaming – Communications characterized by an ongoing flow of 

bytes from a server to one or more clients.
• Example: An internet radio broadcast where the client 

receives bytes over time transmitted by the server in an 
ongoing sequence of small packets. 

• Messaging – Message passing involves one way asynchronous, 
often queued, communications, producing loosely coupled 
systems.

• Example: Sending an email message where you may get a 
response or you may not, and if you do get a response you 
don’t know exactly when you will get it.

• RPC – Remote Procedure Call systems allow function calls to be 
made between processes on different computers.

• Example: An iPhone app calling a service on the Internet 
which returns the weather forecast.

Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.

Apache Thrift is an efficient cross platform 
serialization solution for streaming interfaces

Apache Thrift provides a complete RPC framework



Source: Randy Abernethy. The Programmer’s Guide to Apache Thrift, Manning Publications Co.



— Google open sourced in Feb 2015

— Transport: HTTP/2

— Wire format: Protocol Buffers v3 (Binary)

— Service definition: Protocol Buffers IDL

— Libraries in ~10 languages (native C, Go, Java)

— Microservices framework



What is gRPC for? (from official FAQ)

— Low latency, highly scalable, distributed systems

— Developing mobile clients which are communicating 
to a cloud server

— Designing a new protocol that needs to be accurate, 
efficient and language independent

— Layered design to enable extension e.g. 
authentication, load balancing, logging and 
monitoring etc


