
Some Remarks on RabbitMQ Clustering

• https://www.rabbitmq.com/clustering.html
• Note use of Consul, RAFT, etc
• RabbitMQ always has good documentation, so I recommend reading

https://www.rabbitmq.com/clustering.html

What Are Some
Characteristics of Cloud-

Native Applications?

Cloud-Native
Applications:
A Partial List

• They can grow and shrink dynamically
• They are fault tolerant: a component crash

doesn’t bring down the entire system
• You don’t need to restart the whole

system to add, update, or remove
individual parts
• They operate continuously and evolve

without downtime over a wide variety of
operating conditions.

The Control Plane:
Information

Management and
Coordination in

Distributed Systems

Challenges with Microservices

API Gateway &
RouterUI Server

N Jobs

Microservice 1

Microservice 2

Microservice 3

Microservice 1Microservice 1
(“Accounts”)

Microservice 2Microservice 2
(“Inventory”)

Microservice 3Microservice 3
(“Shipping”)

Some questions:
• Is Replica 2 of Microservice #1 up and running?
• Do I have at least one service running?
• Replica 2 for Microservice #2 just came up and needs

to find configuration information. How can it do that?
• Microservice 3 uses Leader-Follower, and the Leader

just failed. What do I do?

Messaging, Data Plane Information, Control Plane

Shipping

Inventory
Inventory

Account
Account

Inventory

Account

Message
Broker

Transaction
Orchestrator

Shipping

A Message Broker can be used to decouple hard-
coded connections between services.

ShippingWith systems like Kafka, the broker can also be used
to build a log-centric system.
• This is related to Event Sourcing

Messaging and Log-Centric Approaches

Account 3

Account 2

Account 1
Control
Plane

Transaction
Orchestrator

1. “Which
Account
Service
instance
should I
use?”

2. “Account 2”

3. Invoke RPC You can combine dynamic binding and RPC
or REST by using a Control Plane system
like Consul.

Decoupled Control and Data Planes

Distributed State and Coordination
Management: Zookeeper, ETCD, Consul

What Does
the Control
Plane Do?

Keeps track of services through heartbeats

Stores configuration information for services

Organizes services into useful groupings or
collections (“Account Service” group, for example)

Helps services discover each other

Stores (usually) small pieces of metadata about
services (port, IP, for example)

Helps services perform higher level coordination

How Do
Control Planes
Do This?

Control planes store data
using hierarchical key-value
stores: trees, like a file system

Clients can create and delete
nodes in these trees.

Clients can put, get, update,
and delete information stored
in a tree/leaf node

One More
Clever Thing:
Notifications

Clients can request to get
notified when changes occur in
the Control Plane’s data

A client can listen for the
creation or removal of a node
in a certain part of the tree

A client can listen for the
writing or deletion of content
within a node

Control Plane Implementation

Control Planes must be very fault-tolerant

They replicate the tree structures and data across multiple servers

Control Planes are better suited for READ-heavy rather than WRITE-heavy
applications

Zookeeper as an
Example Control Plane

Technology

• The ZooKeeper Service is replicated over a set of machines
• A leader is elected on service startup
• Clients can READ from any Zookeeper server.
• WRITEs go through the leader & need majority consensus.

https://cwiki.apache.org/confluence/display/ZOOKEEPER/ProjectDescription

These are your
microservices

Zookeeper is itself an
interesting distributed
system

Zookeeper Trees
Consist of
ZNodes
• Znodes maintain data

with version numbers
and timestamps.
• Version numbers

increases with changes
• Data in a node are read

and written in their
entirety

Example
Structure

Zookeeper, Briefly

• Zookeeper Clients (that is, your microservices) can create,
read, update, and delete nodes on Zookeeper trees
• Clients can put small pieces of useful data into the nodes and

get data out.
• Even the existence/non-existence of nodes can be useful

information

You could build a small DNS or an LDAP server with Zookeeper

ZNode Types

• Clients create and delete explicitly
• PersistentRegular

• Like regular znodes associated with sessions
• Deleted when session expires
• Clients can renew sessions

Ephemeral

Optional
Node
Property:
Sequencing

• Both Regular and Ephemeral
Nodes can be Sequential
• The ZNode name includes a

universal, monotonically
increasing counter
• You can use this to create unique

node names

Zookeeper
API: Working
with Trees

• create(path, data, flags): Creates a
ZNode with path name path, stores
data[] in it, and returns the name of the
new ZNode.
• flags enables a client to select the

type of ZNode (regular or ephemeral)
and set the sequential flag;

• delete(path, version): Deletes the ZNode
path if that ZNode is at the expected
version
• getChildren(path, watch): Returns the

set of names of the children of a ZNode
• More about watch in a minute

Zookeeper
API: Working
with Node
Data

• getData(path, watch): Returns the data
and meta-data, such as version
information, associated with the ZNode.
• setData(path, data, version): Writes

data[] to ZNode named in the path if the
version number is the current version of
the ZNode

Zookeeper
API: Beyond
CRUD

• exists(path, watch): Returns true if the
ZNode with path name path exists and
returns false otherwise.
• If watch is true, the client will be

notified if the ZNode is created.
• sync(path): Waits for all updates

pending at the start of the operation
to propagate to the server that the
client is connected to.

Let’s Look at Implementing
Basic Control Plane

Operations

Terminology
Reminder

• Client: this is one of are your
microservices
• Server: this is an internal Zookeeper

server

Client
Discovery by
Other Clients

• Have each new instance create an
ephemeral node when it joins
• /root/services/newService

• The content of the node can contain
useful information about the service
• For example, IP address and port

• Querying the children of /root/services
will return a service list.
• You can group them.
• /root/services/accounts/newService

System
Health

• Builds on Service Discovery
• Clients register themselves as

ephemeral nodes
• Ephemeral nodes get deleted if the

client that creates them fails.
• Other clients can put watches on

these nodes.
• If the node is deleted, a notification

is fired to the other watching
clients

Group
Membership
for Clients

• Groups are just child nodes
/root/services/dataStaging/members/newSe
rvice
• Path names are just conventions
• You may want to define a few bootstrapping

paths in static configuration files.
• Need unique names? Create new nodes with

sequential flag
• /root/services/dataStaging/members/ne
wService_3

Runtime
Server
Configuration

• Assume services need runtime configuration that
they read after they come up
• For example, which RabbitMQ queues does

the “Account” service read from or write to?
• Put this info into Zookeeper as a standard node
• /root/services/accounts/config

• Services in /root/services/accounts then read from
config node
• If config is empty or doesn’t exist, clients set watch

flags for it.
• Receive notices if the config is created, gets

populated, or changes

Advanced Coordination
Scenarios

Rendezvous
Problem

What happens if essential
configuration information
isn’t available to a client
when it starts?

For example, which
member of a client group is
the leader?

Solving the
Rendezvous
Problem

• Use a node named(for example)
/root/accounts/rendezvous
• All the members of the

/root/accounts/services group watch for
the creation of the rendezvous node
• Example: exists(path=

/root/accounts/rendezvous, watch=true)
• When the rendezvous node is created and

filled in (by the leader, for example), the
watching clients are notified, and
everyone reads the information in the
rendezvous node.

Resource
Locking in
Distributed
Systems

Locks allow multiple client
instances and client types to
modify shared resources, like files
or configuration information.

Locks can also be used to
implement a simple leader
management scheme

Solving the
Locks Problem

Assume a client wants to a lock a system
resource so that it can make changes to it

The client locks the resource by creating a
sequential ephemeral node:
/root/accounts/resources/lock_1

The locking client can delete the lock_1
node, or it can just let the node session
expire

If the client with the lock fails, the lock will
eventually get released

Locks,
Continued:
Wait Your
Turn

If a second client wants to modify a locked resource,
what does the second client do?

First, Client #2 creates its own lock as a sequential,
ephemeral node: /root/dataStaging/resources/lock_2

Next, put a watch on
/root/dataStaging/resources/lock_1.

When lock_1 is released, the client who created lock_2
gets notified and now has the lock

Client 2 should renew the lock_2 node’s session until
Client 1’s lock is released

If Client 2 fails before Client 1 releases the lock, the
lock passes to the owner of lock_3

Work Queues

You can implement work queues by
having clients create ephemeral nodes
indicating they are available to do work.

When a client gets work, it deletes its
node

After the client completes a job, it
creates a new node

Work
Partitioning

• Imagine you have a large amount of data to
process
• Partition the data into 100 parts
• Create 100 ZNodes corresponding to each data

partition
• Each ZNode includes instructions, such as

the location, size, and offset of the data to be
processed

• If a client wants to process partition #12, it
creates an ephemeral child node on the
Partition #12 node to lock it.
• When the processing is done, the client deletes

the node for Partition #12.
• If the client fails, the lock elapses, and another

client can take Partition #12

Apache
Curator

Curator is a Java library
implemented on top of
Zookeeper

It has many “out of the box”
recipes (patterns) for many
common distributed system
problems

https://curator.apache.org/curator-recipes/index.html

How Does Zookeeper Work Internally?

Zookeeper Internals, Briefly

Zookeeper has one
server that acts as the

leader

The leader keeps the
primary copy of the data

(the node tree and its
contents)

Client write requests are
passed by a subordinate

server to the leader

The leader provisionally
applies the update to its

data

It then notifies the other
servers about the

change

When a majority of the
other servers confirm

that they can apply the
change, the leader

commits the change

Zookeeper Internals, Continued

This is called “quorum consensus” or “majority consensus”

A minority of subordinate servers may be behind the current state
of the leader

Zookeeper allows clients to still read the obsolete information
from lagging clients

RAFT-based systems like Consul and ETCD are stricter: leader
handles all reads

Questions

• What are the limits of this version of the quorum consensus
approach?
• What happens if the leader fails?

Zookeeper Clusters
• Small clusters

handle writes more
efficiently

• Large clusters
handle larger read
volumes better.

1. Failure and recovery of
follower.

2. Failure and recovery of
follower.

3. Failure of leader (200 ms
to recover).

4. Failure of two followers
(4a and 4b), recovery at
4c.

5. Failure of leader

A cluster of 5 zookeeper servers responds to manually injected failures.

CAP Theorem:

A distributed
data store can
simultaneously
provide at most
two of the
following three
guarantees

https://en.wikipedia.org/wiki/CAP_theorem

Consistency: Clients receive the most
recent write for every request

Availability: Clients receive a response
without the guarantee that it contains the
most recent write

Partition tolerance: The system continues
to operate despite an arbitrary number of
messages being dropped or delayed by the
network between nodes

CAP and the
Control Plane

• When you build a distributed system, you
typically choose between availability and
consistency
• RAFT-based systems like Consul are

consistent: all READs go to the leader, but
the leader can only handle so much traffic
• Zookeeper choose availability over

consistency
• Gives higher READ throughput if eventual

consistency is OK

• It all depends on how consistent your
distributed state needs to be

