
Mental
Models vs.
Tutorials

• People who have good mental
models ask better questions
•Mental models are always

simplifications of real things
• Be ready to replace your mental

model with a better one when it
no longer answers your questions.

Mental Model Goals

What are logs and how do they relate to system state?

What is a consensus algorithm?

What is leader election and how does it work?

How do these contribute to fault tolerance?

What are the limits of leader-based consensus algorithms?

Log-Centric Distributed
Systems

Motivations and an overview of the Raft algorithm

Some Highly Recommended References
• “The Log: What every software engineer should know about real-time

data's unifying abstraction”
• Jay Kreps
• https://engineering.linkedin.com/distributed-systems/log-what-every-software-

engineer-should-know-about-real-time-datas-unifying

• “In search of an understandable consensus algorithm”
• Diego Ongaro, John K Ousterhout
• https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

• “The RAFT Consensus Algorithm”
• http://www.andrew.cmu.edu/course/14-736/applications/ln/riconwest2013.pdf
• Diego Ongaro and John Ousterhout

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
http://www.andrew.cmu.edu/course/14-736/applications/ln/riconwest2013.pdf

What Are Some Properties of
Cloud-Native Distributed

Systems?

What’s your mental model?

Some
Properties
of Cloud-

Native
Services

They are fault-tolerant, can
keep working even if part of the
system is down.

They can smoothly scale up or
down to handle different loads

They are dynamic: minimal
static configuration and hard
coding

Two
General

Classes of
Cloud-
Native

Services

Stateless

Stateful

A Stateless Example: Work Queue Producers
and Consumers
• Producers are stateless: fire and forget
• Consumers are mostly stateless: after C1 finishes a job, it can do new

work with no memory of the previous job.
• Scaling out producers and consumers is trivial IF the broker scales
• There is state; it’s in the broker

A Stateful Example: Leader-Follower

• State-changing events
(Create, Update, Delete) go
to a leader
• The leader updates

followers.
• A follower can take over if

the leader fails

This is not as scalable as stateless services. Why not?

Follower

Leader

Follower

Producer

Logs and State

• Use logs to capture system
state
• Store logs carefully
• Distribute logs to potential

replacements

Follower

Leader

Follower

Producer

A log is a just
a record of
time-ordered
state change
events

Back up logs so that they
can be replayed to
recover.

Copy logs to following
processes so that they
can stay in synch with the
leader.

Kafka uses distributed logs and a leader-follower model

Logs and
Service Mesh
Control Planes

Consul, ETCD, and Zookeeper
manage information in
distributed systems

You can use them to implement
a control plane for your service
mesh (microservices)

Consul and ETCD use a protocol
called RAFT, as does RabbitMQ
when clustered

Let’s Contrast Log-Centric and
Queue-Centric Approaches

Message Queues
• Message Queue: a data structure containing a consumable list of

entries.
• Publishers create queue entries
• Brokers manage the queues
• Consumers consume queue entries
• Entries are removed when they are consumed.

Queues are not logs. The state of the
queue is something that the broker

must carefully manage.

A Queue-Centric Design
• RabbitMQ’s Work Queue Tutorial Example
• A publisher puts work in a queue
• The broker distributes it to consumers in round-robin fashion
• The consumers send ACKs after they have processed the message
• Consumers can limit the number of messages they receive.

Queue-
Based
Systems

• The broker needs to know if the
message was delivered and processed
correctly
• Is it safe to delete an entry? Must use

ACKs nor NACKs
• The broker needs to keep careful track

of the queue.
• Queue entries are supposed to be

ephemeral.

Issue Solution

Consumer crashes Broker detects the crash using a heartbeat.

Consumer is very slow Heartbeat detects that the consumer is alive but taking a very long
time to send an ACK. Solution: use a time out.

Consumer is
temporarily
inaccessible

Consumer A doesn’t crash but the heartbeat fails. The broker resends
the message to Consumer B. Then network returns and Consumer A
sends the ACK. The message got processed twice.

Broker is temporarily
inaccessible

The broker’s host server is temporarily off the network. The broker
thinks all un-ACK’d messages are lost and so re-queues them. It will
want to redeliver them when it detects consumers are available again,
but then a cascade of ACKs will arrive. How do you handle this?

Some issues with detecting failed message delivery

Towards a Log-Centric
Architecture:
But first, what do we mean by logs? Application Logs, Queues, and State Logs

Application Logs
• The info, warning, error, and

other debugging messages
you put into your code.
• Very useful for detecting

errors, debugging, etc.
• Human readable,

unstructured format
• This is NOT a state log

Example System State Log: MySQL Dump

• You can use MySQL’s dump command to create a restorable version of
your DB.
• These are logs

• What if you needed to restore lots of replicated databases from the
same dump?

Logs and State
Machines

A log is a
replayable set

of recorded
instructions

Replicated logs
are used to
implement
replicated

state
machines

Replicated
state

machines are
used to build
distributed

systems

Consensus
algorithms

keep
replicated logs

in synch

Some Desirable Properties of System State Logs
Property Description

Ordered Logs record state changes, so they must be in sequence
(indexed)

Correct We are confident that a log entry was recorded
correctly

Complete There are no missing records between the first and last
entry

Machine Readable Log entries are serialized data structures, operations

Persistently Stored The logs are stored on highly stable media

Available Applications that depend upon the logs can get them

High
Availability
Requires
Log
Replication

• There must be a failover source of logs if
the primary source is lost.
• Weak consistency may be OK: a replica

may be behind the primary copy, but
otherwise, it matches the primary copy
exactly
• Consensus algorithms address this

problem
• Paxos is the most famous consensus

algorithm
• Lamport, L., 1998. The part-time

parliament. ACM Transactions on
Computer Systems (TOCS), 16(2),
pp.133-169.

• But it is hard to understand and implement

Raft Consensus Algorithm

• Raft has been developed to provide a more comprehensible
consensus protocol for log-oriented systems
• Several implementations
• https://raft.github.io/
• See also http://thesecretlivesofdata.com/raft/

• It resembles but is simpler than Zookeeper’s Zab protocol
• Ongaro, D. and Ousterhout, J.K., 2014, June. In search of an

understandable consensus algorithm. In USENIX Annual Technical
Conference (pp. 305-319)

I’ll use some slides from https://raft.github.io/

https://raft.github.io/
http://thesecretlivesofdata.com/raft/
https://raft.github.io/

Remember: Raft is an
algorithm, not a piece of

software

Software like Consul and ETCD use the protocol.
Zab, Viewstamped Replication, and Paxos are alternative protocols

Properties of Consensus Systems

Property Description
Safety Never return incorrect results to queries
Availability The system functions as long as a majority of servers

are operational
Ordered
Messages

Message order does not depend on system clocks;
slow networks are not a problem

Majority
Commits

Logs are recorded if a majority of members accepts
the write. Don’t need to wait on complete
consensus.

RAFT
Leader
(Server)

RAFT
Follower
(Server)

RAFT
Follower
(Server)

Leader’s
Log

Follower’s
Log

Follower’s
Log

RAFT Basic
Concepts

Client (Some
Microservice)

Structure
of a Log

Raft Consensus Algorithm

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1

Log
Entry 3

Log
Entry 2

Log
Entry 1

Log
Entry 4

Log
Entry 3

Log
Entry 2

Log
Entry 1

Leader

Follower

Follower

Raft Protocol Guarantees: Always True (1/5)

Election Safety: at most one
leader can be elected in a
given term.

Raft Protocol Guarantees: Always True (2/5)

Leader Append-Only: a leader
never overwrites or deletes
entries in its log; it only
appends new entries.

Raft Protocol Guarantees: Always True (3/5)

Log Matching: if two logs contain an
entry with the same index and term,
then the logs are identical in all
entries up through the given index.

Raft Protocol Guarantees: Always True (4/5)

Leader Completeness: If a log entry is
committed in a given term, then the
entry will appear in the logs of
leaders of future

Raft Protocol Guarantees: Always True (5/5)

State Machine Safety: if a server has
applied a log entry at a given index to
its state machine, no other server will
ever apply a different log entry for the
same index.

Raft Basics: Strong Leader and Passive Followers

• In Raft, the leader
supervises all write
operations
• The leader service/broker

accept write requests from
clients
• Follower-brokers redirect

write requests from clients
to the leader broker
• We saw this with Kafka and

ZK

Raft Basics: Leaders Need Consensus

• The leader sends log
updates to all followers
• If a majority of followers

accept the update, the
leader instructs everyone
to commit the message.
• If a leader can’t get

consensus, it may abdicate
• Members choose a new

leader through an election

Raft Achieves
Eventual
Consistency

A minority of followers can
have fewer committed
messages than the majority
at any given time

But lagging members will
have a subset of committed
messages

Summary of
Part 1

Use logs to record changes to your system.

Centralized logs make it easy for the system
have a universal, consistent, replayable
record of how it evolved over time

Services that manage the central logs need
to be correct, reliable, recoverable, and fault
tolerant

The Raft protocol is a popular way to
provide these guarantees

