
Testing Microservices

Some opinionated and possibly wrong suggestions

The Classic Testing Pyramid

UI

API

Integration

Unit

Expensive, time consuming

Cheap, quick

Will this work
for

Microservices?

Remember that you use
Microservices to build cloud
services.

You aren’t shipping code to
clients

You have a complicated live
system that is always running

Invert the Pyramid

Embed testing in your design at each level

Inverted Pyramid: UI and API Testing

Develop user stories up front

Create mockups for the user interface

Develop your APIs based on the user stories.

Implementing the mockup creates your API reference implementation

Implement UI and API tests from the beginning

Use off the shelf tools like Selenium

Inverted
Pyramid:
Integration
Testing

Decide on your messaging and coordination
strategy

Enumerate your microservices

Create internal APIs and data models for each
service

Create skeletons for each microservice

Design API (“contract”) tests for your system

Inverted
Pyramid: Unit
Testing

• Internally, microservices follow
patterns
• Use these patterns to create

(object oriented) abstractions
• Extend your abstractions for each

service instance
• Test the whole service, not just

the specific business logic

Anatomy of a Microservice

Inter-Service Communication

External Resource Communication

Application Logging

Configuration

Business Logic

• Inter-Service Communication connects the
microservice to other microservices via the
control plane and data (messaging) plane.
• REST, gRPC SDK, RabbitMQ, Kafka,
• Security
• Instrumentation communications

• Configuration contains the service’s operational
parameters.

• Business Logic implements what the service
actually does.

• Application Logging logs the service’s
operations for monitoring and debugging.

• External Resource Communication connects the
microservice to its DB or an external data store.

A Bold
Hypothesis

• Most important bugs don’t come from
your own bad business logic.

The Origin of
Bugs

• Bugs come from working code that fails to
meet non-functional requirements like
performance or security.
• Bugs come from the parts of your service

that you didn’t write: SDKs, other
generated code, libraries, and other
dependencies
• Or they come from the environment

where your services run
• Or they come from other unexpected

events and behaviors that are hard to
reproduce

Therefore, you need to develop
tests around a global view of

risks to your system

A Risk Register
Approach to
Testing

Risk registers are used in
project management to
enumerate risks (ISO 31000,
for instance)

Each risk has a description,
severity level, probability,
mitigation, and contingency

https://en.wikipedia.org/wiki/Risk_register

Example of a Risk Register

https://en.wikipedia.org/wiki/Risk_register

Risk Register
Example for
Project
Management

• Risk: lead developer leaves
project for a different job
• Severity: high
• Probability: medium-high
•Mitigation: groom successors
• Contingency: promote a

successor

Apply This
Approach to
Your System

• Think about failure events at all
probability levels
•Develop mitigation and

contingency plans
•Map these to tests
• Test failures trigger risks

Example:
Customer is
charged
twice for the
same
purchase

• Probability: low if you follow
good design patterns
• Severity: medium if you can undo

the doubled payment; otherwise,
high
•Mitigation: adopt appropriate

patterns, develop tests to detect
occurrence
• Contingency: Notify customer,

credit card company

Approaches to Microservice
Integration and Unit Testing

First, choose
your
communication
and coordination
strategies

We’ve called these the Control
Plane and the Data Plane in
previous lectures

https://microservices.io/patterns/microservices.html

The Basic REST Approach

Critique of the
Basic REST
Approach

Control logic is embedded in particular services
like the storefront

Service paths are accessed by instance rather than
by function or type

How do you know if a service is down?

It’s static and brittle

It is hard to test

Shipping

Inventory
Inventory

Account
Account

Inventory

Account

Message
Broker

API
Gateway

Shipping

A Message Broker can be used to decouple hard-
coded connections between services.
• Topic-based publish/subscribe is a powerful way

to do this.

ShippingWith systems like Kafka, the broker can also be used
to build a log-centric system.
• This is related to Event Sourcing

Messaging and Log-Centric Approaches

Account 3

Account 2

Account 1
Control
Plane

API
Gateway

1. “Which
Account
Service
should I
use?”

2. “Account 2”

3. Invoke
RPC You can combine dynamic binding and RPC

or REST by using a Control Plane system
like Consul.

A Hybrid Approach: Service Mesh

Foundations of
Testing
Microservices:
Have a Clean
Architecture

If using messaging, use it
consistently. All communications
go through the message bus.

If using a separate Control Plane,
all services use the control plane
service to coordinate.

Avoid having some services use
one communication mechanism
and other services use another

Foundations of
Testing
Microservices:
Topic-Based
Publish/Subscribe
Is Powerful

Pub-sub systems can send the same
message to multiple recipients.

You can send real messages to both your
production and in-testing components.

Test components receive real messages
and real message loads, so you can see
how they behave.

This is a foundation for Canary
integration tests (more in a moment)

Foundations of
Testing
Microservices:
Start with the
Interfaces and
Messages

Define your microservices by API and/or
by the message format and data model.

What messages does the service
receive?

What messages does the service return?

If you have this, you can mock services
and test API changes

Anatomy of a Microservice

Inter-Service Communication

External Resource Communication

Application Logging

Configuration

Business Logic

• Inter-Service Communication connects the
microservice to other microservices via the
control plane and data (messaging) plane.
• REST, gRPC SDK, RabbitMQ, Kafka,
• Security
• Instrumentation communications

• Configuration contains the service’s operational
parameters.

• Business Logic implements what the service
actually does.

• Application Logging logs the service’s
operations for monitoring and debugging.

• External Resource Communication connects the
microservice to its DB or an external data store.

Development
Strategy for
Effective Unit
and Early
Integration
Testing

Write the business logic layer last.

You may be able to create the
other layers by extending a
common set of base classes.

Use unit tests at all layers

Unit Testing
Strategy

Don’t limit unit tests to the business logic
layer

Test what happens when you get failures in
other layers

Log problems so that they can be mapped to
risks

Use log aggregation to get a global view of
the system

Integration and Deployment
Testing

Deployment
Pattern #1: Big
Bang

Take the old system down

Deploy the new system (or subsystem) all at once

Apologize for downtime

If you have enough (cloud) resources and a
reproducible deployment, there really is no need to
do this (see next slide)

Deployment
Pattern #2:
Blue-Green

Two versions of your system or
subsystem are running separately

Route traffic from old (blue) to
new (green) system or subsystem

Roll back to blue if you encounter
problems

Deployment
Pattern #3:
Canary

Like blue-green, you maintain two
(sub)systems, old and new

Gradually send some traffic to the
new deployment.

If everything works, increase traffic to
new deployment until you have
entirely replaced the old deployment

Messaging Systems Enable Blue-Green and
Canary Integration Testing
• Pub-sub allows you

to send the same
message to multiple
recipients
• Use this to send to

both the production
and test systems
• Test your service

under real conditions
without disrupting
production

Message
Broker

Production

Test Deployment

Log-Centric Systems Enable Replay,
Reproducibility
• Test “green” services

against historical logs
• Replay logs to help

recreate bugs

Log Broker

Production

Test Deployment

Testing
Subsystems

• A particular interaction like a
transaction may span multiple
microservices
• Don’t waste time trying to figure out

how to implement these yourself
• Instead, use design patterns to help

define your implementations
consistently
• For testing, deploy all the services

associated with the pattern as a
subsystem for testing

Distributed Transactions Are a Challenge for “One
DB Per Service” Microservices

https://medium.com/swlh/microservices-architecture-what-is-saga-pattern-and-how-important-is-it-55f56cfedd6b

Distributed
Transactions

Problem #1: No one database

Problem #2: Transactions can be long-
lived, so you don’t want to lock
resources

Solution, Part 1: Break the
transaction into atomic steps

Solution, Part 2: Have compensatory
operations that can undo each
operation.

Saga is an example
of an academic
solution that
suddenly became
relevant decades
later.

Saga: long-lived
transaction

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

Garcia-Molina, H. and Salem, K., 1987. Sagas. ACM Sigmod
Record, 16(3), pp.249-259.

Distributed Transaction Pattern: Saga Choreography

https://medium.com/swlh/microservices-architecture-what-is-saga-pattern-and-how-important-is-it-55f56cfedd6b

Saga
Choreography
Assumptions

You create an ID for each
transaction

Each step can be rolled back if
there is a failure

All processes involved in
transactions get notified if
there is a failure

Variation: Saga
Orchestration

https://medium.com/swlh/microservices-
architecture-what-is-saga-pattern-and-
how-important-is-it-55f56cfedd6b

Testing
Saga
Operations

Sagas need to handle non-
failure conditions, such as
insufficient stock to
complete the order.

You therefore must
identify, implement, and
test all the rollback
scenarios

Testing
Saga

Updates

Assumption: you need to test a
new version of the Stock Service

Option 1: Stand up the entire
subsystem with dummy databases

Option 2: Stand up only the new
service, using stub services for the
other parts of the subsystem

Final
Thoughts

• Compare testing with engineering’s
Verification, Validation, and
Uncertainty Quantification (VVUQ)
process for models
• Verification: no bugs in the algorithm
• Validation: works correctly for test

cases
• Uncertainty Quantification: we know

what we don’t know
• We’ll look more at performance

testing and related topics (-> UQ) in
the next lecture

