
Outside-In Development
and Testing

“Onion/Skeleton
Development Process”

• Think about the whole
problem first
• Work from the outside

in
• Build a skeleton of your

entire system first
• Kubernetes->Docker-

>Skeleton Code->Real
Code
• Successive

approximation of the
final system

Operational Testing

Teaching
Operational
Testing Is a
Challenge

• Typical response #1 to
homework: “Our system met all
challenges!”
• Typical response #2 to

homework: “We did what you
told us to do. Things behaved
weirdly. We don’t know why.”

Understand
the Purpose of
Operational
Testing

Know the limits of your
system

Find things in your system
that need to be improved
and improve them.

Using Risks to Guide
Operational Testing

Risks

What are the risks to your system?

Develop a Risk Register to help you
enumerate your risks

Severity and Probability: help you prioritize
efforts

Mitigation: how do you reduce severity or
probability

Contingency: what do you do if a risk is
triggered?

Automatically
Triggering

Risks Is Key

• Monitor both your software and your
operational environment
• Develop a set of triggers for your

identified risks
• Examples:
• Are your services down?
• Is your code throwing errors?
• Is your environment running out of

resources (high CPU load, low memory,
low disk space)?

• If you can articulate it, you can google it:
find the tools to spot these risks

Beyond the
Risk Registry

•How do you classify types of
risks?
•Binary groupings are a good start

Example: Is
the risk under
your control or
outside your
control?

Under your control: system
performance, scaling, security, etc

Outside your control: Jetstream
crashes, Google Drive has an
outage, etc

Another
Example
Categorization:
Is the risk
triggered
suddenly or is it
incremental?

• A sudden risk is triggered by a
specific event, like network failure or
a power outage
• An incremental risk builds up over

time, like performance degradation
• Incremental risks may be punctuated

by a crash
• You set thresholds to trigger

incremental risks
• How do you find the thresholds?

Example Risk
Associated

with
Incremental

Events
• Your system works well for 25 concurrent

users, but response times are twice as
long with 50 users, and outright failures
are at 1% with 100 users

Incremental Risks Are
Often Associated with

Non-Functional
Requirements

Use Performance Testing
to Measure Incremental

Risks

Not All Risks
Need

Performance
Testing

• They need to be addressed with better
mitigation and contingency plans
• Example: “If IU Jetstream goes down, we’re

screwed”
• Mitigation: Make sure you can move your

entire system to a failover location
• If you have followed the course’s

recommendations, this should be doable
• Mitigation: maintain a separate system for

failover cases (just like Blue-Green
deployments)
• Contingency: Move to Amazon and pay the

bills

Performance Testing

Understanding your incremental risks

Setting Up
Performance

Tests

• Apply performance tests to your end-to-
end system
• Launch them through the User Interface
• Monitor behavior of the User Interface

(response times, correctness)
• Also monitor behavior of services
• Where are the bottle necks and weak

points?
• Is the system behaving correctly?

• You can also test subsystems (like services
that constitute a saga)

Performance
Test Examples

• Load Testing: how well does the system
perform under different load levels?
When does performance start to degrade?
• Stress Testing: how much load does it take

to break the system?
• Soak Testing: does the system degrade

over time and heavy load?
• Fault Tolerance Testing: does the system

continue to work if we purposefully cause
failures

Load Testing

• What is load?
• Number of user doing things at normal

user speed
• How do you test load?
• Simulate usage through the user

interface
• How do you increase load?
• Increase number of users

• What do you expect to see as you increase
load?
• Test UI correctness and response time
• Monitor performance of services and

subsystems

Stress Testing

• Like Load Testing, only you really want to break
the system
• Sample protocol
• Test with 10 concurrent users
• If test passes, increase by order of magnitude

(100 users)
• Continue to increase by order of magnitude

(1000, 10,000, ...) until failure
• If test fails, confirm still working or restart,

and then test at the halfway point
• (10,000-1000)/2, for example

• Repeat until you have an upper bound
• What do you measure?
• Correctness
• Response time

Soak Testing

• Like Load Testing, only for a long time (hours,
days, ...)
• Use a heavy but doable load
• Why?
• Identify “leaks” that cause increases over

time in CPU, memory, file system or I/O, and
network usage

• What are you monitoring?
• Correctness of response: did failures occur?
• End-to-end performance: did it remain

constant over time?
• Component correctness and performance are

also important
• Which components degrade over time?
• Which components are bottlenecks?

Fault
Tolerance

Testing

• Does my system continue to work when I
inject partial failures?
• What is the performance like when I have

partial failures?

How to Run
Tests

• Microservice environments are highly
variable
• You may get different behaviors at

different times
• Each test is a measurement or sample
• Collect measurements and calculate

statistics: average and standard deviation

In Conclusion,
LMGTFY

• Once you have a name for a concept, you
can find it
• Load Testing: JMeter is a popular tool, but

we’d love to find others
• System Monitoring: Prometheus is a

popular tool

